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Abstract

The influence in space and time of viscous layers on the deformation pattern of brittle layers is investigated using wet clay/silicone putty

analogue models in extension. Brittle and brittle–viscous experiments at various extension velocities are compared. Numerical models are

also performed to confirm the results and to control the boundary conditions. Our results show that: (i) the presence of a basal viscous layer

localizes the deformation by creating faults with very large throw. This kind of deformation distribution constrains the location of small

faults, with scattered orientations, in the vicinity of the larger, in particular in relay zones. (ii) A lower strength of the viscous layer (i.e. a low

extension velocity) enhances this localization of the deformation. (iii) The displacement–length relationship and the spatial distribution of

small-scale faults are strongly influenced by both the rheology of the model and the amount of extension. This study shows that they are

important parameters, especially when characterizing the whole fault network evolution and the relationship between large and small faults.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Geometry, spacing and growth sequence are fault-

network characteristics commonly explained in terms of

both the rheology and the thickness of the brittle layer in

which faults grow (Vendeville et al., 1987; Cowie and

Scholz, 1992b; Cowie et al., 1993; Lavier et al., 1999;

Ackermann et al., 2001). Using field studies, experimental

and numerical models, a sequence of propagation for

normal faults has been described as the combination of

radial propagation (growth of an isolated fault by tip

propagation) and segment linkage (Fig. 1) (Segal and

Pollard, 1980; Peacock and Sanderson 1991; Cowie and

Scholz, 1992b; Cowie et al., 1993; Cartwright et al., 1996;

Marchal et al., 1998; Ackermann et al., 2001).

When the evolution of a complete fault network is

described through statistical studies, two relationships are

often computed: the displacement–length relationship and the

size–frequency relationship. Both are characterized by

power-law type functions (Watterson, 1986; Walsh and

Watterson, 1988; Cowie and Scholz, 1992a; Dawers et al.,

1993; Scholz et al., 1993; Clark and Cox, 1996; Nicol et al.,

1996; Pickering et al., 1997; Cowie, 1998) and can be applied

to estimate the strain contribution and the characteristics of

small-scale faults. The following power-law relation

expresses the displacement (D)–length (L) relationship:

D ¼ cLn ð1Þ

where c is the function of the mechanical characteristics of the

layer, and n is the scaling exponent. Values for this exponent

range from less than 1 (Fossen and Hesthammer, 1997; Gross

et al., 1997; Ackermann and Schlische, 1999), to 1 (Cowie and

Scholz, 1992a; Dawers et al., 1993; Schlische et al., 1996), 1.5

(Marrett and Allmendinger, 1991; Gillespie et al., 1992;

Yielding et al., 1996) and, 2 (Watterson, 1986; Walsh and

Watterson, 1988). Although most investigators agree that a

value of 1 is a good rule, no consensus has yet been established

about the value of n.

The presence of viscous layers and their strength are

known to be important parameters controlling deformation
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patterns. The importance of the mechanical layering has

been demonstrated for the lithosphere (Allemand and Brun,

1991; Buck et al., 1999; Brun, 1999), the whole crust (Brun,

1999), and the upper brittle crust (Gross et al., 1997;

Withjack and Callaway, 2000). The effects of brittle

mechanical layering on fault network growth have been

studied recently in an experimental work (Ackermann et al.,

2001) and from field data (Schultz and Fossen, 2002).

However, the effects of viscous layers have been under-

studied, except in Davy et al. (1995) in a compressive

context or in Withjack and Callaway, (2000) in basement-

involved faulting.

In this paper, analogue and numerical models are used to

demonstrate the influence of viscous layers on fault growth.

For this purpose, fault networks generated with and without

a basal viscous layer, and networks generated with a basal

viscous layer under various extension velocities are

compared. In each experiment, the general space-time

evolution of normal fault networks is studied through three

steps of extension, with particular attention paid to the

spatial relationships between large and small faults.

2. Experimental procedure and dataset

2.1. Experimental set-up and materials

2.1.1. Boundary conditions

The experiments are performed in a deformation box

(Fig. 2), with dimensions ranging between 60 £ 50 £ 10 and

60 £ 70 £ 10 cm. A basal rubber sheet fixed to rigid and

movable walls induces nearly homogeneous extension in

the overlying materials. The rubber sheet can be affected by

strain gradients in the vicinity of the movable wall,

especially at high extension rates and with a thick rubber

sheet (Ackermann, 1997). This small departure from

homogeneous extension affects the fault related strain but

does not alter the results presented later in this paper. Fault

networks are generated in a two-layer model, one 2 cm

silicone lower layer and one 4 cm wet clay upper layer. Five

experiments in a suite of 15 are used to demonstrate the

influence of viscous layer on fault growth.

2.1.2. Analogue materials and scaling laws

The wet clay used here consists of a homogeneous

mixture of water and pure industrial kaolinite powder. This

kind of material has been previously used to simulate brittle

behaviour (Cloos, 1968; Withjack and Jamison, 1986;

Clifton et al., 2000; Withjack and Callaway, 2000;

Ackermann et al., 2001). The water/kaolinite mixture in

our experiments has a density of 1.55 g/cm3 (approximately

40% water). At the conditions and scale of the experiments,

the wet clay behaves like a brittle material in which faults

develop as illustrated in Fig. 3. The internal friction of the

wet clay is about 0.5 (Sims, 1993). This value is similar to

Fig. 1. Normal fault growth (from Cowie, 1998). (a) Isolated growth by tip

propagation. (b) Interactions between fault segments. (c) Propagation by

segment connection.

Fig. 2. Experimental set-up: the deformation box in cross-section. Two

layers compose the model: one 4 cm thick layer of sand, one 2 cm thick

layer of silicone. The two-layer model is underlain by a basal rubber sheet

that applied the extension, whose velocity varied from 0.011 to 0.05 mm/s.

Fig. 3. Surface view of the fault network generated in wet clay. (a)

Curvature of a fault segment and beginning of the coalescence. (b)

Curvature of two segments leading to a single and undulating fault.
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the internal friction of rocks in nature. The cohesion of the

wet clay is estimated to 50 Pa (Sims, 1993). As inertial

forces are neglected, the cohesion must satisfy the following

dynamic similarity criterion:

Cp ¼ dpgplp ð2Þ

where C p, d p, g p, and l p are the model-to-nature ratio

for cohesion, density, gravity, and length, respectively

(Hubbert, 1937). In our models, C p is about 1024–1025, d p

is about 0.6, and g p is equal to 1. Thus, to ensure dynamic

similarity and satisfy Eq. (2), the length ratio l p is about

1.5 £ 1024–1.5 £ 1025 (1 cm in the model corresponds to

about 60–600 m in nature).

The silicone putty (SMG36 produced by Dow Corning)

is used to simulate viscous layers such as salt or under-

compacted shales layers in sedimentary basins. The silicone

putty, under laboratory conditions, behaves as a Newtonian

fluid (Weijermars, 1986) with a viscosity equal to 5.104 Pa s

and a density of 0.97 g/cm3. The silicone putty must satisfy

the following similarity criterion:

hp ¼ dpgplptp ð3Þ

where h p, d p, g p, l p, and t p are the model-to-nature ratio

for viscosity, density, gravity, length, and time, respect-

ively. In our models, h p is about 10214, d p is about 0.6, g p

is equal to 1, and l p is about 1.5 £ 1025. Thus, to satisfy Eq.

(3), t p is about 1029 (1 h in the model represents about

100,000 years in nature).

Two parameters were varied: the presence of basal

silicone putty and the velocity of extension. Two exper-

iments were performed without silicone at two different

velocities (0.023 and 0.05 mm/s), and three experiments

were performed with basal silicone putty at three different

velocities (0.011, 0.023 and 0.05 mm/s). The models are

deformed at strain rates between 2 £ 1025 s21 and

1024 s21. The last value is similar to Ackermann et al.

(2001). This lower velocity is used to explore the role of low

silicone strength, as it is proportional to velocity (and

viscosity):

R ¼ hhe 0 ð4Þ

where R, h, h, and e 0 are the strength, the thickness, the

viscosity and the strain rate of the silicone layer,

respectively. The extension is transmitted from the base of

the model and then is different from a far-field extension.

Questions could also arise from the coupling between the

rubber sheet and the silicone and between the silicone and

the sand layer. These experimental conditions are discussed

in a later section.

Finally, as illustrated in Section 3.1 and reported by

recent works (Clifton et al., 2000; Ackermann et al., 2001),

the modes of faulting in wet clay are close to natural brittle

deformation. Thus, although the models might not be

perfectly scaled, they are useful to simulate natural

extensional features.

2.2. Data processing

2.2.1. Fault detection

The deformed models are analyzed using topographic

information. A three-dimensional (3D) laser-beam scanner

allows us to digitize the model topography (Fig. 4a) and

build a digital elevation model in the central part of the

experiment avoiding edge effects. The laser resolution is

0.25 mm in the x, y, z directions. From this topographic data,

a slope map is calculated using a gradient matrix. Fault

surfaces are extracted by fixing a threshold on the slope map

(Fig. 4b). This map contains three values: (i) white for low

slope area, (ii) blue for west, and (iii) red for east dipping

faults. The last step consists of the automatic digitization of

the fault polygons (Fig. 4c). As the fault polygons are

extracted from the topographic map, each segment building

these polygons is contained in a 0.25 £ 0.25 mm cell.

Finally, the fault polygons that crosscut the edge of the

analyzed area are automatically removed from the fault list.

The topographic map and the list of fault polygons contain

the entire information about the 3D-fault surface (i.e. x, y, z

coordinates, strike, dip direction, length, throw). These

parameters are used to quickly compute scaling relation-

ships such as the displacement–length relationship.

2.2.2. Displacement–length relationship

Below a throw of about 0.25 mm, fault length is

underestimated and the trend of the dataset in this area

has a lower slope than in the large length area (Fig. 5). For

this reason, the throw length relationship is calculated in the

area of medium to large throw and length (i.e. the data in the

black continuous envelope in Fig. 5). The relationship is

then calculated over one order of magnitude of length and

throw.

For practical reasons, the throw–length relationship will

be used in this paper as a proxy for the displacement–length

relationship with the implicit assumption that all the faults

have the same dip. Nonetheless, faults tend to rotate with

increasing applied strain and their dip decreases from an

initial value of 708 to about 558. Long faults have generally a

longer history than short faults, they have accumulated more

displacement and rotation toward lower dip. Therefore, the

throw–length plot underestimates the contribution of large

faults with respect to a displacement–length plot. Quanti-

tatively, the slope of the throw–length relationship in a

log/log plot should be lower than the one that would have

been measured on a log/log displacement/length plot.

However, we keep the throw–length relationship as a

proxy for the displacement–length relationship because we

are not interested in the absolute value of the displacement–

length slope and this bias mainly affects the very late stages

of the experiments.

2.2.3. Deformation map and participation ratio

From the map of fault polygons and measured throw,

‘deformation’ maps can be computed to study the spatial
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organization of deformation associated with faulting. A cell

of these deformation maps can contain several fault

segments. In each cell, we calculate the product of the

length of each small segment of the faults (see Section

2.2.1) with the associated throw. The value d of each cell of

the deformation map is then the sum of all these products.

This measure is linearly related to strain, under the

assumption that faults are dip-slip and have a more-or-less

constant dip. Several deformation maps are computed

changing the cell size. An increase of the cell size

Fig. 4. Steps of the data processing. (a) Digital topography of the model. (b)

Fault surfaces obtained from a gradient map and using a threshold on slopes

(high gradients). (c) Map of the faults represented by their outline (polygons),

which contains all the geometrical information (azimuth, length, throw and dip).

Fig. 5. Calculation of displacement–length relationship and effect of

resolution. In log–log representation, the scatter of data is similar to the

scatter of natural data. We see also the scatter linked to the resolution of the

experimental system (multiples of 0.25 mm). The continuous envelope is

the data envelope. The black one (continuous and dashed) is the envelope

that we would have obtained without resolution problems: at small throws,

the length is underestimated. The displacement–length relationship is

computed only with the data in the continuous black envelope.
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corresponds to a resolution decrease. These deformation

maps are then used to estimate the distribution of the

deformation and its localization. The localization is the

capacity of the deformation to be distributed heteroge-

neously in system (Davy et al., 1995). A participation ratio

P is used to quantify the localization (Davy et al., 1995;

Sornette et al., 1993). This ratio is defined as:

P ¼
1

S

ð
P

dÞ2P
d2

ð5Þ

where S is the total number of pixels in the map, d the value

of each cell of the deformation map (see above). P compares

areas affected by deformation with the total area; a lower

ratio indicates greater localization (Davy et al., 1995). P is

computed for three experiments with basal silicone putty

and two experiments without basal silicone putty, from

deformation maps that have been computed with various

resolutions (Fig. 6). When the resolution decreases (large

size of cell), the participation ratio increases because a low

resolution has the effect of diffusing the measure of the

deformation. From Fig. 6, we see that two curves cross at

certain resolutions. These crossings are artefacts caused by

measurement inaccuracy. In this case, we consider the

curves identical.

2.2.4. Measured extension versus applied extension

Due to the resolution dependency of P, a second

quantitative method is used, where the ratio E between the

measured extension and the applied extension is calculated.

Heaves are summed along cross-sections in the extension

direction and a ratio is calculated with these heave sums

over the extension applied. This ratio E is plotted versus the

extension applied (Fig. 7) for the five experiments. As

expected, this ratio is smaller than one because the applied

extension is accommodated by continuous deformation of

the wet clay layer (Ackermann et al., 2001) and by small

faults not detected by the laser (throws below 0.25 mm).

Thus, this ratio is an indicator of the relative importance that

the deformation accommodated for small-scale features: a

higher ratio indicates a larger contribution of the large faults

on deformation. As explained above in the case of the

participation ratio, some curves cross. These crossings are

not significant and the crossing curves can be considered as

identical.

3. Results

3.1. Fault network characteristics and scaling relationships

In the experiments, faults propagate by a combination of

two mechanisms: (i) radial propagation (isolated growth by

tip propagation) and (ii) segment linkage (Fig. 8). The radial

propagation is the most important mechanism during the

early stages of extension (Fig. 8a). Faults grow separately,

their displacement and length are increasing simultaneously

to produce quite symmetric throw profiles. Faults then start

to interact when their length is sufficiently large to create

overlap (Fig. 8b). In this case propagation is disturbed,

throw profiles become asymmetric and throw increases

faster than length. After this period of interaction, the two

Fig. 6. Participation ratio P as a function of the resolution. This ratio is

calculated for different sizes (0.25–100 mm) of pixel of the deformation

map. A large pixel means a low resolution. The deformation is localized

(low value of P) when this ratio is small. Here the ratio is smaller in the case

of a low extension velocity. The deformation is then particularly localized

with low strength silicone.

Fig. 7. Measured extension/applied extension ratio E as a function of the

extension. This ratio is higher when the extension is accommodated by

faults above the laser resolution. When the extension velocity is high, very

small faults are numerous and E is low. When E is high, the extension is

accommodated by large faults; the deformation is more localized, as in the

low velocity case.
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segments frequently link (Figs. 3 and 8c). Connections can

also occur before the formation of a relay zone when the

segments turn toward each other before propagating fault

tips overlap (Fig. 3). The resulting fault shows typical

undulations and an irregular throw profile (Fig. 8c). As

already reported by Clifton et al. (2000) and Ackermann

et al. (2001), the propagation sequence of faults in the wet

clay is closely similar to the propagation sequence of natural

faults.

Quantitatively, the maximum displacement (D)–length

(L) relationship has been computed for three steps of

extension of each experiment and is characterized by the

relation expressed by Eq. (1). The scatter exhibited by the

data (Fig. 5) has been frequently observed and explained by

the mechanism of segment linkage both in natural fault

networks (Cartwright et al., 1995) and other analogue

models (Mansfield and Cartwright, 2001). The scatter at low

displacement values is also caused by the resolution of the

laser beam (0.25 mm) and the related inaccuracy of throw

and length measurements. The scaling exponent n of the

different fault networks varies between 0.6 and 1 (Table 1).

These values are consistent with those obtained by

Ackermann et al. (2001) and in some natural cases (Fossen

and Hesthammer, 1997; Gross et al., 1997; Ackermann and

Schlische 1999).

3.2. Localization of deformation

Even though the effects of mechanical properties and

thickness of a brittle layer on fault patterns are well known,

the effects of a viscous layer underlying a brittle layer are

still not well documented. Therefore, we compare the

distribution of deformation on one-layer wet clay and two-

layer wet clay/silicone models (Fig. 9). The first stages of

extension (less than 7%) are difficult to analyze because the

size of the faults is commonly below the resolution of the

laser beam, and also because some extension may be

accommodated by continuous deformation. Even though the

networks are quite similar, the distribution of the defor-

mation is clearly more heterogeneous and the maximum

displacements are more important with a basal viscous

layer. When extension values are larger than 15%, the

evolution of the two fault networks is very different.

Without the silicone layer, new faults initiate and grow

continuously, resulting in a relatively homogeneous fault

pattern. In contrast, in the presence of a basal silicone layer,

few faults initiate and develop, accommodating the major

part of the applied extension. This style of deformation

produces non-deformed zones bounded by faults with large

displacement. The participation ratio P (Fig. 6) quantifies

the difference between clay and clay/silicone models. At a

fixed resolution, the ratio P calculated for clay experiments

is systematically higher than in clay/silicone experiments,

whatever the velocity (see, for example v ¼ 0.023 mm/s of

the experiment displayed in Fig. 9). The ratio E of measured

extension over applied extension (Fig. 7) allows us to study

how the model accommodates the extension. Large ratios

(close to one) indicate that large faults develop. Low ratios

indicate that the extension is accommodated by smaller

faults (and very small faults not well detected). The ratio E

Fig. 8. Growth sequence observed in the clay models. Topography map and

throw profiles are shown. (a) Two faults grow by tip propagation. The

maximum throw is about 4 mm. (b) The faults start to interact and a

segment turns toward the other one. The maximum throw is about 7 mm. (c)

Both the segments are connected and form a single fault (another is

connected on the left of the map). At this last step, the maximum throw is

10 mm.

Table 1

List of scaling exponent of displacement–length relationship for each

experiment. The three steps of extension are computed (Ext.: amount of

extension). Sil.: two-layers experiments (sand and silicone putty). Three

exponents are not given because regression was not satisfactory

Ext. 13% Ext. 20% Ext. 28%

0.05 mm/s 0.59 0.68

0.023 mm/s 0.64 0.66

Sil. 0.05 mm/s 0.80 0.76

Sil. 0.023 mm/s 0.83 0.87 0.85

Sil. 0.011 mm/s 0.77 0.89 0.97

N. Bellahsen et al. / Journal of Structural Geology 25 (2003) 1471–14851476



for experiments with basal silicone layer is systematically

higher than in experiments without basal silicone. Fault

networks in clay/silicone models are composed of faults

with a statistically larger displacement than in clay models.

This observation, combined with qualitative comparison of

network and results of participation ratio calculation,

highlights that the deformation is more localized in models

with a basal silicone layer.

In wet clay/silicone models, an important parameter is

the extension velocity as it controls the strength of the

viscous layer (Eq. (4)). Its effects on the fault network are

studied comparing the networks generated in clay and

silicone models with various velocities (Fig. 10). The

experiments demonstrate that lower velocities result in

larger fault throws with large undeformed zones. This mean

that at low extension velocities or low silicone strength

deformation is more localized. This is also demonstrated by

the participation ratio decrease at low velocity. At velocities

of 0.05 and 0.023 mm/s, the curves are very close, while the

curve for the velocity v ¼ 0.011 mm/s is lower, illustrating

the localization of the deformation. P is a normalized ratio

that measures the spatial distribution of the deformation and

not its intensity. Looking at the fault network, the spatial

distribution of the deformation is similar in the experiments

performed at 0.05 and 0.023 mm/s (Figs. 9 and 10). This

explains why the two corresponding participation ratios are

very close.

For the model with low extension velocity (0.011 mm/s),

the ratio E (measured over applied extension) is large (Fig.

7). Most of the extension is accommodated by large faults,

localizing the deformation. However, the curves for

velocities v ¼ 0.011 and 0.023 mm/s are very close

compared with the curve of the 0.05 mm/s velocity

experiment. The extension accommodated by large faults

Fig. 9. Comparison between fault networks generated in clay with and without basal silicone. In models with basal silicon, the spatial distribution of the faults is

more heterogeneous and the displacements are larger. Large zones are not deformed; few small faults exist, except in the vicinity of large faults. In clay

experiments, unfortunately, an initial topography gradient of a few millimetres is caused by the initial deposition of the wet clay. However, this gradient is

perpendicular to the extension direction and tends to disappear with increasing extension. This gradient is then assumed not to influence the evolution of the

experiments and not to alter the results.
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is effectively almost the same for the two experiments

(0.011 and 0.023 mm/s). This result combined with that of

the participation ratio provides interesting information. For

fast extension velocity (i.e. 0.05 mm/s), the deformation is

‘homogeneously’ distributed. For lower extension velocity

(i.e. 0.023 mm/s), the deformation is also ‘homogeneously’

distributed, but the extension is accommodated by larger

faults. Finally, for the lowest extension velocity (i.e.

0.011 mm/s), the deformation is more heterogeneously

distributed and the extension accommodated by large faults

is similar to the one of the previous experiment. In

summary, these experiments show that: (i) the presence of

a basal viscous layer induces a localization of the

deformation, and (ii) a low extension velocity, applied at

the base of the model, enhanced this phenomenon.

3.3. Small faults

So far we have demonstrated that the characteristics of

the viscous layer strongly influence the geometry of the fault

pattern as a whole. This section demonstrates that its effect

is also significant when describing the relationship between

large and small faults.

Large faults generated in analogue models with strongly

localized deformation accommodate most of the applied

extension. In this case, the creation of new major faults is

limited. Genetically there are essentially three kinds of

small new faults (small length and throw) (Fig. 11); their

number, position and orientation are now discussed.

(a) The first population is generated by the extension

applied at the base or at the lateral boundary of the

model. Their initiation is limited in the case of strong

localization because when the silicone layer is weak,

few new faults initiate between the large faults. As in

Gupta and Scholz (2000), the initiation of small faults

is inhibited with increasing extension. This is particu-

larly true with a weak basal layer. Thus, the position

and creation of these small faults are controlled by the

strength of the basal silicone. The early small faults

became larger ones as they coalesced (Ackermann and

Schlische, 1997; Cowie, 1998).

(b) The second population, antithetic faults, is genetically

related to the presence of large displacement on faults,

and thus initiate only in the vicinity of these large

faults. In our models, the rheology influences their

Fig. 10. Comparison between fault networks generated in clay with basal silicon for two different extension velocities. The slower the velocity, the more

heterogeneous and localized the spatial distribution of faults. A slow extension velocity enhances the effect of presence of basal silicone as shown in Fig. 9.
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number as a weak silicone layer, producing large

displacements, induces the creation of a large number

of these faults. Meanwhile, their position and their

orientation, which is parallel to the direction of the

large faults, remain unchanged.

(c) The third population is generated in zones of

interaction between two faults. This last kind of

small faults is the population of faults created

particularly in the case of relay ramp fracturing. The

orientation of these faults is oblique to the average

strike of the larger ones.

The measure of the dispersion of fault orientation

(Fig. 12) gives two results. The first is a greater dispersion

of small faults than larger ones. The activity of a large fault

perturbs the stress field, in particular the directions of

principal stresses around normal faults (Simon et al., 1999).

Near the centre of the fault, stress releases occur, especially

in the footwall block. At the fault tips, stress accumulations

and perturbations (Kattenhorn et al., 2000) and interactions

between faults (Crider and Pollard, 1998) perturb the stress

field in relay zones. The orientation of principal stresses is

then changed and new small faults initiate according to this

local stress field. These perturbations should be enhanced by

the accumulation of displacement on large faults. Thus, the

phenomenon is amplified with the evolution of the system,

as an increase of total extension applied induces an increase

of the throws and lengths of faults. The second result of

Fig. 12 shows the increase of this dispersion with the

decrease of silicone strength. This effect is explained by the

increase of localization at low silicone strength that

contributes to create large faults and then increases the

role of relay zones, stress field perturbations, and dispersion

of small fault directions.

From what we have seen so far, the position of small

faults was influenced by the strength of the basal silicone

layer and small faults are clustered around large faults when

the basal layer is weak, as only small relay faults and

antithetic faults are initiated. In other cases, as in

Ackermann and Schlische (1997), small faults are anti-

clustered around larger faults. This suggests that fault

clustering must be approached as a function of the rheology.

3.4. Numerical models

To complete and verify the results, the same experiments

have been performed in mechanical simulations using a 2D

numerical code (Paravoz, explicit hybrid finite-difference/-

finite element code) (Poliakov and Hermann, 1994). In this

code, based on the well-tested solver of the FLAC algorithm

(Cundall, 1989), shear bands can develop spontaneously and

thus can be assimilated to non-predefined faults. In the

numerical experiments, the mechanical properties and

boundary conditions have been reproduced as close as

possible to those used in our analogue models (Fig. 13).

The Paravoz code is a fully explicit time-marching large-

strain Lagrangian algorithm that solves the full Newtonian

equation of motion:

r
›

›t

›u

›t

� �
2 divs2 rg ¼ 0 ð6Þ

coupled with constitutive equations of kind:

Ds

Dt
¼ F s u;7

›u

›t
;…T…

� �� �
ð7Þ

Fig. 11. The three main kinds of small new faults. (a) Faults generated by

the regional stress field. (b) Faults due to large displacement accumulated

on faults and block rotation. (c) Relay faults due to interactions between

two larger faults.

Fig. 12. Diagram of fault length as a function of orientation. The azimuth

zero is perpendicular to the extension direction. The large faults are

perpendicular to this extension direction, but the small have more dispersed

orientations. This phenomenon is amplified by low silicone strength.
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and with those of heat transfer (not used in our

experiments). In these equations, u, s, and g are the

vector-matrix terms for the displacement, stress, and

acceleration due to body forces, respectively. The terms t

and r, respectively, designate the time and density. The

terms ›/›t, D/Dt, and F denote a time derivative, an

objective time derivative and a functional of the variables

given in brackets, respectively.

Solution of the equations of motion provides velocities at

mesh points, which permit calculation of element strains.

These strains are used in the constitutive relations to

calculate element stresses and equivalent forces, which form

the basic input for the next calculation cycle. To solve

explicitly the governing equations, the FLAC method uses a

dynamic relaxation technique by introducing artificial

masses in the inertial system. This technique is capable of

modelling physically highly unstable processes and of

handling strongly non-linear rock rheologies in their explicit

form of the constitutive relationship between strain and

stress. The code handles plastic and viscous strain

localization, which allows simulation of formation of non-

predefined shear bands. The brittle properties of the wet clay

were simulated using Mohr–Coulomb plasticity with

friction angle of 308 and cohesion of 50 Pa. The values of

the elastic Lamé constants were equal to 0.02 MPa. The

silicone was simulated as a Maxwell fluid with effective

viscosity of 5 £ 104 Pa s (Newtonian viscous behaviour

with an elastic component, which can be schematically

illustrated by a serial connection of an elastic spring and a

viscous dash pot damper).

The numerical grid was formed from 500 £ 60 quad-

rilateral elements (respectively, horizontally and vertically)

composed of 2000 £ 240 triangular sub-elements (each

quadrilateral element consists of four triangular elements, to

minimize mesh locking (Cundall, 1989). The resulting

numerical resolution was very high (four triangular

elements per square millimetre, which approaches the

resolution of the laser scanner used in the experimental

models). The upper boundary was set as a free surface, a

horizontal velocity V was imposed on the right boundary

and the left boundary was fixed horizontally, with a free slip

condition in the vertical direction (Fig. 13). At the bottom

boundary, a horizontal free-slip condition was used,

whereas the vertical velocity was set to zero. No velocity

field was applied at the bottom, in contrast to the analogue

models where the shear with the underlying rubber sheet

induced a velocity field that linearly increased from the

fixed side to the moving one.

Two basic situations were tested using two different

horizontal boundary velocities (0.011 and 0.05 mm/s). The

cross-sections show the total plastic strain (Fig. 14) that

develops through time and is expressed as synthetic and

antithetic shear bands. At the beginning, single shear bands

develop and secondary antithetic shear bands initiate,

forming conjugate sets that merge generally close to the

elasto-plastic/visco-elastic contact. In the first 8% of

extension of the 0.05 mm/s experiment, approximately 10

shear bands initiate. After 20% of extension, the number of

shear bands has doubled. All shear bands, the earlier ones

and the later ones, continue to be active.

In the 0.011 mm/s experiment, the shear bands are less

numerous and accommodate a large part of the applied

deformation. They become very complex with the creation

of new secondary shear bands, but no new deformed zone is

created, and the plastic strain intensity in the shear bands is

higher than in the 0.05 mm/s case. The deformation of the

brittle layer is similar to boudinage, where some zones are

intensively thinned while others are undeformed without

significant rigid rotation. The comparison of these two

simulations demonstrates remarkable similarity to the

analogue models, where low extension velocity (i.e. low

silicone strength) produces localization of the deformation.

4. Discussion

4.1. Experimental conditions

Before stating any conclusions, several experimental

conditions need to be discussed: the behaviour of the wet

clay, the coupling between the rubber sheet and the silicone

layer and between the silicone layer and the brittle layer.

The behaviour of the wet clay is not perfectly established

and is known to be partly viscous. Ackermann (1997)

Fig. 13. Boundary conditions and mechanical properties of the numerical simulations. The conditions and mechanical properties are almost the same as in the

analogue models. Elasto-plastic layer: the Lamé coefficients are equal to 0.02 MPa, the cohesion and the friction angle are 50 Pa and 308, respectively. Viscous

layer: the viscosity is 5.104 Pa s. The boundary conditions are identical except the bottom condition that, here, is a horizontal free-slip condition.
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showed that in one-layer clay models, the velocity of

extension has an effect on the fault network, in the sense that

fast strain rate could generate localized models. In our

models (Fig. 15), visual comparison between two networks

generated at different velocities (0.023 and 0.05 mm/s)

shows that the geometries of the fault networks are similar.

In the same way, the values of P and E at velocities of 0.023

and 0.05 mm/s are close (Fig. 6). The small differences that

we can observe are much smaller than the difference

between the two experiments with silicone with correspond-

ing velocities. The introduction of a basal viscous layer

radically changes the deformation evolution. Thus, the

velocity has a strong effect on the silicone layer strength (as

expected) and this effect is much more important than the

effect on the clay layer strength. This shows that the viscous

behaviour of the wet clay can be neglected under the

conditions of the experiments described here.

The question about coupling and boundary conditions

can be approached through the numerical simulations. In

these models, the extension is applied by moving a lateral

vertical boundary and not through the base of the model.

The phenomenon of localization highlighted in laboratory

experiments should not be attributed to the basal conditions

of extension, as we also observe this localization in

numerical experiments.

Finally, in the numerical models, the interface between

the brittle and the viscous layer is set as ‘sticky’. The

localization is not an artefact that is caused by problems of

coupling along interfaces; the variation of extension

velocity only influences the rheology of the models and

would have the same effect as a variation of the viscosity of

the silicone layer. These results thus confirm that the viscous

layer strength controls the localization of the deformation in

the brittle layer, as observed in the wet clay/silicone models.

Fig. 14. Results of the numerical simulations. The total plastic strain (length variation over initial length) accumulated in the model is shown. The deformation

is more localized when the velocity is low. In this case, the shear bands are less numerous but each accommodates more extension.

Fig. 15. Comparison between fault networks generated in clay without basal

silicone for two different extension velocities. The extension velocity

slightly affects spatial distribution of faults.
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4.2. Evolution of the displacement–length relationship

The evolution with time of the displacement–length

relationship is poorly constrained. We here show that its

scaling exponent varies as a function of both the rheology

and the amount of extension.

We observe that the scaling exponent (slope of the

regression line in log–log space) depends on the rheology of

the model. The presence of weak silicone induces higher

values of n (Table 1) that indicate a more localized

deformation as the viscous basal layer favours the creation

of high displacement with respect to lengths. Moreover, the

range of displacement (between large and small faults) is

higher than in delocalized models, which induces a higher

displacement–length scaling exponent. Ackermann et al.

(2001) showed that a thick brittle layer favours steeper

slopes (high value of n) than thinner models. A decrease of

silicone strength and increase of brittle thickness have

similar results: a higher scaling exponent n and a localized

deformation. In other words, in the presence of basal

silicone, the brittle layer is stratigraphically unconfined

(Schultz and Fossen 2002) and favours accumulation of

displacement.

Furthermore, the rheology also controls the evolution

with amount of extension of the scaling exponent. At high

silicone strength (high velocity of extension), there is no

evident evolution of n with increasing strain (Table 1). The

scaling exponent seems to be more or less constant or to

decrease. This last case would signify that length increases

faster per unit of displacement and this result is consistent

with Ackermann et al. (2001). Fault linkage and the

associated increase of length explain this behaviour well.

However, at very low silicone strength (low extension

velocity, 0.011 mm/s) the exponent increases with amount

of extension (Table 1). In these localized models, the

evolution suggests that displacements increase faster than

length and shows that the presence of a weak silicone layer,

favouring larger displacement, can change the time

evolution of the scaling exponent. Such an increase was

inferred in several works (Morewood and Roberts, 1999;

Gupta and Scholz, 2000; Poulimenos, 2000), which showed

that, in high strain settings, displacement is accommodated

on faults that are no longer growing in length. This can be

caused by lateral inhibition of tip propagation because of the

perturbed stress around other faults (Contreras et al., 2000;

Gupta and Scholz, 2000; Poulimenos, 2000). As explained

in Section 2.2.2, the scaling exponent of the displacement–

length relationship is underestimated in the last stages of

extension because of fault rotation and decreasing fault dip.

This underestimation supports our interpretation as we

should have obtained higher exponents, at high amount of

extension and low viscous layer strength.

A stratigraphic confinement (that increases with the

strength of the basal layer) influences fault growth in the

sense that they grow in length more rapidly than in

displacement. When the brittle layer is unconfined (for

example when a low strength viscous layer is present at its

base as in this study) or when the lateral propagation is

inhibited, the displacement can increase more rapidly and

the scaling exponent of the displacement–length relation-

ship is higher and increases with time.

4.3. Role of viscous layers at various scales

The localization of the deformation in our experiments

occurs when the extension is accommodated along large

faults and induces an increase of the displacement–length

relation exponent. The localization of the deformation

occurs because the weak viscous layer allows the blocks

between main faults to sink in this viscous layer. Hence,

large accumulations of displacement along the faults are

possible. Then the faults that exist at a given time (or a given

amount of extension) can accommodate most of the applied

extension during an increment of deformation. No faults

will initiate in the non-deformed regions, as the stresses are

completely released by accumulation of displacement on the

existing faults. Moreover, the low strength of the silicone

allows this material to flow from the subsiding block toward

the elevated block. This silicone flow tends to enhance the

displacement along the faults as a feedback mechanism.

When the lower layer has a high strength (strong viscous

layer or another brittle layer), the faults must deform or

break a harder material at the base of the brittle layer to

accumulate further displacement. In this case, less energy is

necessary to initiate new faults and to accommodate the

increasing extension.

At the lithospheric scale, the lower crust is embedded

between two brittle layers, the brittle crust and the brittle

lithospheric mantle. Crustal extension might be controlled

by failure in the brittle mantle and by the lower crust, which

transmits stresses vertically but distributes them horizon-

tally (Allemand and Brun, 1991). Different laboratory

experiments (Allemand, 1988; Brun and Beslier, 1996;

Brun, 1999; Michon and Merle, 2000) showed that the

geometry of the deformation in the analogue upper crust is

controlled by the rheology of the ductile lower crust. In

these studies, low strain rates (i.e. low ductile strength)

produce a localized deformation. This type of deformation

is characterized by a narrow zone (single graben) or by tilted

blocks separated by faults with large displacements. Such a

deformation pattern is found in the Gulf of Suez, for

example, where blocks between major faults are almost

non-deformed (Colletta et al., 1988).

It is also noteworthy that natural rocks have strongly

strain-rate dependent ductile rheology. For such rheology,

the interaction between the brittle and ductile layers in

asymmetric lateral boundary velocity settings (extension

from one side) necessarily results in lateral variations in the

effective viscosity of the lower ductile crustal layer. The

faults forming in the vicinity of the moving boundary are

characterized with higher slip and strain rates than those

located at the stable side (e.g. middle of a rift basin).
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Consequently, the brittle–ductile boundary at the moving

side experiences faster vertical strains than that at its stable

side. If the viscosity of the underlying ductile layer is stress

and strain-rate dependent, we would infer additional

reduction of the effective viscosity of the ductile layer in

the vicinity of the moving side of the system. Though we are

conscious of the importance of such behaviours, we choose

to ignore them, as the strain-dependence behaviour of rocks

is not yet well calibrated.

In other analogue and numerical models, deformation

above reactivated basement faults is influenced by the

presence of a viscous layer between the basement fault and

the cover sequence (Schultz-Ela, 1994; Withjack and

Callaway, 2000). Even though the basal conditions are

different than in the present work, some similar conclusions

are obtained.

In our experiments, under homogeneous basal boundary

conditions, the deformation in the brittle layers can be

localized in the presence of low strength viscous layers.

These homogeneous basal conditions simulate the con-

ditions at the upper crustal scale in a rifted continental area.

In these tectonic environments, the conditions at the base of

the brittle layers are difficult to establish. Is the extension

transmitted from a deeper level in a homogeneous way or in

a localized area (velocity discontinuity) or transmitted only

by a far-field stress state? We have shown that in all these

cases the presence of a weak basal viscous layer could

produce localization of deformation, even under homo-

geneous basal conditions. Furthermore, the stress state could

be intermediary between these different solutions. The basal

condition may be between the two end-members: a

homogeneous and a localized transmission.

5. Conclusions

This work is based on detailed analysis of wet

clay/silicone experiments evolution in extension. In these

experiments, the growth sequence of the normal faults is a

combination of two mechanisms: the radial propagation and

the connection of segments. The displacement–length

relationship exhibits a power-law form. This study shows

that:

(i) The presence of a basal viscous layer and its strength

has a strong influence on the deformation pattern in the

brittle layer. It produces a localization of the

deformation, i.e. a heterogeneous distribution of faults.

In this case, the deformation is accommodated by large

faults in few areas while other areas are almost

undeformed. This phenomenon is amplified by a low

strength of the silicone. The localization of the

deformation influences the small-scale faulting in

terms of spatial organization and fault orientations

(clustering their position in the vicinity of large faults

and scattering their orientation). A characterization of

the rheology of the deformed system is then very

important when studying the evolution of a fault

network.

(ii) The scaling exponent of the displacement–length

relationship increases with the decrease of silicone

strength. It is caused by a strong localization of the

deformation. In this case large faults are very

important and grow faster than smaller faults. An

increase of the exponent is also found with

increasing extension at low silicone strength, while

a decrease of the exponent through time is found at

high silicone strength. Because of this time- and

rheology-dependence, it seems fruitless to search for

universal statistical parameters describing natural

fault networks. To validate the evolution through

time of a scaling exponent, we have now to find

direct links between this evolution and the growth

sequence. In any case, an estimate of the amount of

extension accommodated by the system is then

necessary.

The understanding of the geometry of a complete fault

network and the prediction of sub-seismic faults must

therefore take into account both the rheology of the entire

deformed system and the amount of extension.
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continental. Unpublished Ph.D. thesis, Université de Rennes I.
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