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[1] The emplacement of silicic magma bodies in the upper crust may be controlled by
density (such that there is no buoyancy to drive further ascent) or temperature (such that
surrounding rocks are too cold to deform significantly over geological timescales).
Evidence for the latter control is provided by negative gravity anomalies over many
granitic plutons. Conditions of diapir ascent and emplacement in this case are studied with
a numerical model for deformation and heat transport allowing for ductile, elastic and
brittle behavior. A large-strain formulation is used to solve for temperature, stress, strain,
and strain rate fields as a function of time for a range of diapir sizes, density contrasts, and
background geotherms. The method allows for large viscosity contrasts of more than 6
orders of magnitude and determines the dominant deformation mechanism depending on
the local values of temperature, strain, and strain rate. Emplacement depth and final
deformation characteristics depend on diapir size and buoyancy. Small diapirs (less than
about 5 km in diameter) cannot reach shallow crustal levels and do not involve brittle
deformation. In the ductile regime the diapir flattens significantly upon emplacement due
to stiff roof rocks and to the free surface above. Late stage deformation proceeds by
horizontal spreading, with little upward displacement of roof rocks and is likely to be
interpreted as ‘‘ballooning.’’ Large diapirs (more than about 5 km in diameter) rapidly rise
to shallow depths (1–5 km) and induce brittle faulting in the overlying rocks. In this
regime, buoyancy forces may lead to faulting in roof rocks. In this case, late stage ascent
proceeds by vertical intrusion of a plug of smaller horizontal dimensions than the main
body. Buoyant diapirs keep on rising after solidification, long after the relatively short-
lived high-temperature magmatic stage. This may account for some phases of late caldera
resurgence in extinct volcanic systems. INDEX TERMS: 3210 Mathematical Geophysics:

Modeling; 8159 Tectonophysics: Evolution of the Earth: Rheology—crust and lithosphere; 8145
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1. Introduction

[2] The formation of large magma reservoirs and plutons
in the upper crust may be achieved by four different
mechanisms: diapiric ascent, progressive filling by a con-
tinuous supply of magma (ballooning), a succession of
discrete diking events and finally tectonically induced
magma migration [Bateman, 1984, 1985; Rubin, 1993;

Miller and Paterson, 1994, 1999; Clemens, 1998; Petford
et al., 1993, 2000]. Clemens [1998] and Miller and
Paterson [1999] have recently proposed various field
observation criteria for discriminating between these differ-
ent mechanisms on the basis of experimental and theoret-
ical studies by Cruden [1988], Schmeling et al. [1988], and
Weinberg and Podladchikov [1994]. It is difficult to do
justice to the complex issues raised by the many authors
involved in this controversy and to the large set of field and
petrological observations discussed. We only note that
available physical models are limited in scope and in the
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number of deformation mechanisms involved, and hence
that they may not be sufficiently accurate for comparison
with field data. Most theoretical models have ignored
brittle behavior and have been developed for nondeform-
able spherical diapirs [Schmeling et al., 1988; Mahon et al.,
1988; Chéry et al., 1991; Weinberg and Podladchikov,
1994]. Bittner and Schmeling [1995] did allow for diapir
deformation, but they ignored brittle behavior and the
effect of a free surface at the upper boundary. Furthermore,
they focused on dense basaltic diapirs below lower density
granitic material. Brittle emplacement mechanisms have
been studied in the laboratory using analogue materials.
By design, however, such studies ignore thermal aspects
and rely on simplified materials that always deform in a
single regime (brittle or ductile) regardless of temperature,
stress, and strain rate [e.g., Cruden, 1988; Roman-Berdiel
et al., 1995]). The various simplifications that have been
made are likely to affect significantly ascent rates, pluton
shapes and emplacement characteristics, as shown by
studies on the related problem of salt diapirs [Poliakov et
al., 1993a, 1993b].
[3] For the sake of clarity and simplicity, it is useful to

restrict the discussion to a few major questions. One
question is what dominant mechanism controls the final
depth of emplacement. A rising magma body may stall at
depth because it has reached rocks with the same density or
high mechanical resistance. The latter possibility depends in
fact on temperature and on the inability of magma to heat up
its surroundings, which in turn depends on the previous
history of ascent and cooling. A second question is what
determines the ascent rate. Both problems are interrelated,
of course, because a rapidly rising magma body retains its
heat and hence is able to soften its surroundings. Moreover,
the transition between ductile and brittle behavior is largely
controlled by local mechanical and thermal conditions. A
third question is to determine deformation conditions within
and away from a magma body to allow comparison with
field observations. These different problems must be
addressed simultaneously within a single physical frame-
work. In this paper, we reevaluate the diapir model of pluton
emplacement because earlier attempts have relied on rather
restrictive assumptions. For example, Mahon et al. [1988]
and Schmeling et al. [1988] have solved for the rise and
thermal evolution of a buoyant sphere in a Newtonian fluid.
They only considered Newtonian viscous rheology and
fixed diapir shape. This probably allows a first handle on
the physics of ascent and emplacement, but leads to
incorrect predictions of ascent velocity and thermal evolu-
tion because the upper crust behaves as a strongly nonlinear
strain-softening medium [e.g., Kohlstedt et al., 1995].
Weinberg and Podladchikov [1994] solved for the ascent
of a hot and buoyant sphere through a non Newtonian
power law fluid. They demonstrated that a thin ductile
aureole develops at the edges of the diapir, which signifi-
cantly speeds up ascent. There is field evidence for such an
aureole [Paterson and Fowler, 1993]. However, Weinberg
and Podladchikov [1994] also took a fixed diapir shape and
did not consider thermal effects. One important aspect has
been largely overlooked, the ascent of a buoyant body at
high temperature through the uppermost brittle crust. Chéry
et al. [1991] studied nonlocalized plastic deformation above
a buoyant body at shallow depth but were not able to

account for faulting and for deformation of the magma
body, which had a fixed geometry in their model.
[4] In this paper, we provide a comprehensive description

of the various deformation mechanisms involved with the
ascent of a magmatic diapir. Three deformation mechanisms
are taken into account and solved for simultaneously as a
function of the local stress, strain, strain rate and temper-
ature fields. We focus on the thermal aspects of the problem
and, for the sake of clarity, we do not consider emplacement
in conditions of neutral buoyancy. Thus the diapirs of this
study stall below Earth’s surface only because they are not
able to efficiently deform their surroundings. However, we
discuss the neutral buoyancy mechanism and its expected
differences with the purely thermal mechanism.

2. Physical Framework

[5] We first discuss the different physical mechanisms
involved in order to introduce the important control param-
eters (Figure 1).

2.1. Ductile Deformation

[6] A simple method to evaluate the effects of cooling on
ascent is to compare the characteristic timescales for ascent
and for cooling. In a Newtonian fluid, the ascent velocity of
a buoyant sphere of radius a is given by Stokes’ equation:

W1 ¼ C
1

3

�rga2

mr
; ð1Þ

where mr is the average wall rock viscosity and �r the
density contrast. Constant C depends on the viscosity
contrast between the sphere and its surroundings [Happel
and Brenner, 1983, p. 128]:

C ¼ mr þ md
mr þ 3=2ð Þmd

; ð2Þ

where md is the average diapir viscosity. For reasonable
values of the various parameters involved, predicted ascent
rates are within a range of about 10�8–10�10 m s�1

[Clemens, 1998]. This simple equation shows that ascent is
limited by the deformation characteristics of surrounding
rocks and depends weakly on the viscosity contrast. Thus
even a fully solidified magma chamber can move upward at
geologically significant rates if host rocks are at elevated
temperatures. Heat transport from the chamber to the
surroundings is therefore a key process, as emphasized by
the following argument.
[7] Assuming that heat transport through a magma body

of radius a is governed by diffusion, the timescale for
cooling is

tc ¼
a2

k
; ð3Þ

where k stands for thermal diffusivity. Over this time, the
magma body has moved over vertical distance H:

H � W1tc �
�rga4

mrk
; ð4Þ
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which emphasizes the extreme sensitivity to diapir size. For
a = 1 km, k = 10�6 m2 s�1, mr = 1018 Pa s, which must be
regarded as a lower bound and �r = 400 kg m�3, which is
an upper bound (Table 1), we find that H is about 4 km.
This shows that only large diapirs (with radii in excess of
1 km) can be expected to rise through the crust.
[8] This analysis only deals with Newtonian fluids, which

is inappropriate for upper crustal rocks. Weinberg and
Podladchikov [1994] have proposed an approximate solu-
tion for power law rheologies such that

_e � @�

@t
¼ Asn exp �Q=RT½ 	; ð5Þ

where _e is the strain rate component along the stress axis, A,
R, n, Q are material parameters, t is time, and T is
temperature. Equation (5) is valid for uniaxial deformation
and differential stress, but we follow conventional simpli-
fications [e.g., Bittner and Schmeling, 1995] and extend it to
three dimensions and deviatoric stress (see Appendix A for

details). The characteristic magnitude of deviatoric stress, s,
due to a buoyant sphere is

s ¼ �rga: ð6Þ

The effective viscosity, meff, is given by

meff ¼
6n�1 exp Q=RT½ 	

30:5 n�1ð ÞA �rga½ 	n�1
; ð7Þ

and the corresponding ascent velocity is given by

W2 ¼
1

3

�rga2

meff
ð8Þ

Thus W2 / an+1. For crustal rocks, n � 3 [Brace and
Kohlstedt, 1980; Carter and Tsenn, 1987; Kohlstedt et al.,
1995, Table 2], implying that W2 / a4. The dependence on
diapir size is therefore much stronger than in the Newtonian
case (W1 / a2).

Figure 1. Problem setup. An initially spherical magma reservoir with diameter d and radius r has its
base at 20 km depth (left). The upper crust is made of two layers with different densities (Table 2) but a
single set of deformation laws. Crustal rheology may be schematically described by a stress envelope on
the right, involving ductile, brittle, and elastic deformation mechanisms. Parameters for the stress
envelope correspond to a hot geotherm, a background strain rate of 10�15 s�1, and dry quartz ductile
rheology (Table 2). Note that the brittle domains have less strength in tension than in compression. In
reality (and in our numerical experiments), the brittle-ductile transition is a function of the local
temperature, pressure and strain rate fields and hence is not imposed a priori. The base of the
computational domain at a depth of 20 km deforms such that shear stresses are zero and normal stresses
are proportional to the density contrast with the underlying rocks and the local boundary deflection (so-
called Winkler restoring force). The upper boundary behaves as a free surface and is subjected to erosion.
At the lateral boundaries, the horizontal velocity is set to zero.
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[9] The ascent velocity is also very sensitive to temper-
ature. Figure 2 shows values of the predicted ascent
velocity as a function of temperature for the set of
parameters given in Table 2. The key result is that the
ascent rate drops to negligible values at temperatures below
200�C, which corresponds to crustal conditions at depths
shallower than about 10 km. This rough estimate may be
slightly too large because there is field evidence for
significant creep deformation in quartz at 5–6 km depth
(S. Paterson, personal communication, 2002). Nevertheless,
this argument shows that pluton emplacement at shallow
crustal levels cannot be achieved in a ductile regime in
‘‘normal’’ thermal conditions. This shows that the diapir
size plays a key role because it determines the amount of
thermal energy stored in the diapir, and hence the transient
temperature field which develops around the diapir as it
rises. Interestingly, the critical temperature of 200�C is
close to that of the regional brittle-ductile transition for far-
field tectonic strain rates [Carter and Tsenn, 1987; Kohl-
stedt et al., 1995].
[10] The above arguments were meant to illustrate a few

key physical principles but do not provide accurate
results. They are only valid for an undeformable sphere
in an infinite homogeneous medium and gloss over the
large temperature gradient which develops at the edges of
the diapir. A complete solution thus requires numerical
techniques.

2.2. Brittle Behavior

[11] The uppermost crust, within 10 km of Earth’s sur-
face, remains at temperatures below 200�C if there is no
magmatic or plutonic activity. In such conditions, it deforms
in elastic and brittle regimes [Carter and Tsenn, 1987]. Note
that there is an important difference between the regional
brittle-ductile transition, which depends on the background
temperature field and the far-field tectonic strain rate, and
the local transition above a diapir, where temperatures are
raised above background values and strain rates are set by
local buoyancy forces. We use a simple 2-D model of a thin
elastic plate at the top of a ductile medium to demonstrate
that a buoyant diapir may generate large extensional stresses
in an overlying crustal layer.

[12] At the base of a shallow elastic layer, buoyancy
forces due to a diapir are represented by a static line load Po

creating normal stress per unit length p (Figure 3). The
flattened diapir has the shape of half cylinder of radius a,
and hence

Po ¼ 2p�rga2: ð9Þ

The elastic layer is characterized by flexural rigidity D and
flexural parameter a:

D ¼ Eh3

12 1� n2ð Þ ; ð10Þ

a ¼ 4D

�rcg

� �1=4

; ð11Þ

where E and n are the Young modulus and Poisson’s ratio
(see Appendix A for relation with elastic constants of Lamé,
l and G), D is the rigidity, h is the thickness of the brittle
layer, and �rc the density contrast between the upper
material (air or brittle sedimentary infill) and the ductile
substratum. The values adopted for various variables are
provided in Table 2. This problem has a well-known
solution [Turcotte and Schubert, 2002, chapter 3]. The
horizontal flexural stress sxx is largest at the top and base of
the brittle layer at the load location where it is equal to sm:

max
x;z

sxxð Þ ¼ sm ¼ 3Poa
2h2

: ð12Þ

The brittle yield strength, syield, or sy, is a linear function of
confining pressure and hence of depth [Byerlee, 1978]:

� 0:65rgz �j sy j�� 0:85rgz: ð13Þ

The condition for brittle failure is

j sm j>j sy j ð14Þ

As shown by Figure 3, this condition is met for kilometer-
sized bodies at shallow crustal depths. Thus a magma body
which has risen to the brittle-ductile transition may continue
its ascent in a brittle regime and induce faulting. In such
conditions, the behavior of roof rocks may be quite
complicated, involving stoping and flexural slip in some
circumstances. To study these processes, it is necessary to
account for deformation at the upper boundary (Earth’s
surface).

3. Model Description

[13] The preceding discussion emphasizes that diapir
ascent involves several deformation mechanisms and that

Figure 2. Ascent velocity for nonlinear ductile rheology as
a function of temperature (from equation (8)) [Weinberg and
Podladchikov, 1994]. Parameters are for dry quartz (Table
2). The driving density contrast is taken to be 100 kg m�3.

Table 1. Density Contrasts Between Magma and Host Rocks

According to the Cited Literature

Topic Density Contrast, kg m �3 Reference

Tabular granites 10–400 Cruden [1998]
Molten solidified diapirs 200–400 Carmichael [1989]
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each mechanism operates as a function of local temperature,
pressure and strain rate. For such a complex problem, we
have sought a numerical solution. The governing equations
and the algorithm derived from the ‘‘two-and-a-half’’-
dimensional (2.5-D) finite element code PAROVOZ [Polia-
kov et al., 1993a] are described in detail in Appendix A.
This dynamic method relies on a large-strain explicit
Lagrangian formulation originally developed by Cundall
[1989] and implemented in the well-known FLAC algo-
rithm produced by ITASCA. Its key features are that it
handles true free surface boundary conditions, brittle-elas-
tic-ductile rheology, and that it allows one to follow how
material and mechanical interfaces deform. The fully
explicit numerical scheme uses adaptative time stepping
and hence does not require iterating, which makes it numeri-
cally stable even for highly nonlinear rheologies (Appendix
A) [Cundall, 1989]. The method has many advantages
which have been described elsewhere and the price to pay
is a very small time step. The code has been tested
thoroughly and has been applied to a host of different
problems including a number of related problems such as
the generation and ascent of salt diapirs, the mechanical
stability of shallow magma chambers, passive and active
rifting in brittle-elastic-ductile lithosphere as well as Ray-
leigh-Taylor instabilities in nonlinear media [Poliakov et al.,
1993a, 1993b; Burov and Guillou-Frottier, 1999; Guillou-
Frottier et al., 2000; Burov and Poliakov, 2001]. For clarity
purposes, we have made a few simplifications whose con-
sequences are easily evaluated and which are discussed
briefly at the end of the paper. For example, we do not
account for latent heat release by crystallization and ignore
density changes due to cooling. Our rationale was to keep
the number of variables to a minimum in order to illustrate
the main processes and their dependence on an already large
number of control parameters.

3.1. Erosion

[14] Our model accounts for surface erosion (Appendix
A). As a diapir gets close to the surface, it induces changes

of surface topography (e.g., upward flexure or subsidence).
Because of large viscosity values and the presence of a free
surface above, strain rates are small in the thin roof region.
Thus, as it approaches Earth’s surface, a diapir slows down
and flattens. Erosion rates may vary from 0.1 to 10 mm yr�1

and are comparable to surface uplift rates, implying that
erosion affects the dynamics of ascent, as shown for salt
diapirs by Poliakov et al. [1993a, 1993b]. Over the large
timescales of our numerical calculations (up to 1 Myr),
erosion may remove more than 1 km of material. One effect
is that the surface load is selectively reduced (because
erosion is faster where topography is high and steep). The
other effect is that the mechanically strong brittle layer gets
thinned locally [Burov and Poliakov, 2001]. One key con-
sequence is the dramatic reduction of ‘‘mushrooming’’ at
the top of the diapir, which may lead to a final body in the
form of an almost vertical tube [Poliakov et al., 1993b].
[15] We have used the conventional linear diffusion

equation for erosion (see Appendix A) with a scale-depend-
ent diffusion coefficient of 500 m2 yr�1, as suggested by
experiments and field data [Avouac and Burov, 1996].
Avouac and Burov have shown that due to mechanical
equilibrium conditions and inherent properties of the dif-
fusion equation (Appendix A), the erosion rate gets auto-
matically tuned to the uplift rate so that the value of the
diffusion coefficient need not be known to a high degree of
accuracy. In the examples of this paper, a typical length
scale is about 10 km, implying that a characteristic value of
the erosion rate is 5 mm yr�1, which is comparable to
geological values. As will be shown later, this is of the same
order of magnitude as the ascent velocities.

3.2. Model Parameters and Initial Conditions

3.2.1. Model Geometry
[16] Calculations were carried out over a 50-km-wide

computational domain over heights of 20 or 40 km, with
200  80 or 400  80 elements (see Figure 1 for general
setup). The size of the domain was selected as a compro-
mise between minimizing computation time, minimizing

Table 2. Rheological and Physical Material Parameters and Constants Used in Experimentsa

Parameter or Constant Upper Crust Magma Lower Crust Residual Surface Material

r, kg m�3 2700 2400–2600 2800 2400
n 3 3 3 3
A, Pa�n s – 1 5.  10�12 5.  10�12 5.  10�12 5.  10�12

Q, J mol�1 2.  105 2.  105 2.  105 2.  105

R, J (mol K)�1 8.3145 8.3145 8.3145 8.3145
ng 3.2 – – –
Ag, Pa

�n s�1 6.  10�14.2 – – –
Qg, J mol�1 1.44  105 – – –
nk 1.9 – – –
Ak, Pa

�n s�1 1.  10�15.1 – – –
Qk, J mol�1 1.37  105 – – –
l, Pa 3.  1010 3.  1010 3.  1010 3.  1010

G, Pa 3. 1010 3. 1010 3. 1010 3. 1010

C0 (cohesion), Pa 1.  107 1.  107 1.  107 0
f (friction angle), deg 30 30 30 15
k (thermal conductivity), W m�1 K�1 2.5 2.5 2.5 1.5
ke (coefficient of erosion), m

2 yr�1 500 500 500 500
aThe assumed flow law parameters A, n, Q for uppermost crustal granites (first 10 km) are chosen to reproduce recent experimental

rheologies accounting for strength reduction due to polyphase composition [Bos and Spiers, 2002] and strain rate-dependent frictional-
ductile flow occurring at low confining pressures [Chester, 1995]. The resulting flow law is close to that of weak wet granite Ag, ng, Qg used
by Bittner and Schmeling [1995] and Brace and Kohlstedt [1980]. For more consolidated crust below 10 km, we also used a stronger
granite rheology from Kirby and Kronnenberg [1987] (Ak, nk, Qk). The other material parameters come from Turcotte and Schubert [2002].
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edge effects and minimal resolution needed to localize
brittle shear bands.
[17] We have not considered initial stages of diapir for-

mation, by, for example, Rayleigh-Taylor instability of a
buoyant layer. One reason is that the wavelength and size of
the diapir depend on the dimensions and rheological con-

trasts involved, including that of the substratum beneath the
buoyant layer. This would not allow a simple parameter-
ization of diapir size. Another reason is that one would need
to solve for the behavior of a domain of rather large
horizontal dimensions to capture the dominant wavelength
of instability. We therefore restrict ourselves to a fully

Figure 3. (a) Diagram for a simple model of brittle crustal behavior in a layer overlying a buoyant
diapir. Buoyancy forces induce flexure and tension in the layer, which may exceed the local brittle
strength sy, or syield. Variables are described in the Table 2. (b) Strongly simplified analytical estimates of
stresses induced by a buoyant diapir in brittle upper crust. Calculations are shown for different diapir
sizes r. (left) Maximum elastic stress (max(sxx) = sm, see equation (12)) scaled to buoyancy load per unit
length p, as a function of brittle layer thickness h. (right) Maximum elastic flexural stress sm as a function
of brittle layer thickness h (sxx takes equal maximal absolute values at the layer interfaces z = 0
(extension) and z = h (compression). Since the brittle strength is zero at z = 0 and linearly grows with
depth (equation (13)), the maximal possible extensional stress in a real brittle-elastic plate equals syield at
some depth z greater than 0 and smaller than h/2, at small plate curvature. This maximal depth streams to
z = h at very high curvatures (increasing load) because in this case the neutral plane may be shifted from
z = h/2 to almost z = h (the exact expression for maximal stress in brittle-elastic plate is bulky and is given
by Burov and Diament [1992]). Dashed line shows the brittle strength limit syield (sy in the text) at z = h,
which is absolute stress limit in the layer.
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developed diapir that has detached from its source. It may be
shown that, in an infinite medium, a finite body rising in a
laminar regime must keep a spherical shape [Batchelor,
1967, p. 238]. In geological conditions, diapir ascent occurs
at small Reynolds numbers and thus in the laminar regime,
and hence we have started all calculations with a circular
body. This has the added advantage of allowing comparisons
with previous studies [Cruden, 1988]; Mahon et al., 1998];
Schmeling et al., 1988; Weinberg and Podladchikov, 1994].
3.2.2. Rheology
[18] In most calculations, the continental crust is attrib-

uted a single brittle-elastic-ductile rheology but is layered in
density. Specifying constitutive ductile flow laws for upper
crustal rocks, which contain water and are characterized by
large variations of mineralogy and texture, is a difficult task
[e.g., Kohlstedt et al., 1995].
[19] Values for quartzite have been used widely because of

a lack of data on other rock types, but this choice is
questionable [Brace and Kohlstedt, 1980]. A recent review
by Kohlstedt et al. [1995] suggests that quartzite and granite
rheologies significantly overestimate upper crustal strength
especially at small confining pressures (<10 km depth).
Laboratory measurements and direct observations suggest
that the strength of uppermost crustal rocks is at most 50–
200 MPa [e.g., Kohlstedt et al., 1995; Chester, 1995; Bills et
al., 1994] instead of the 500–700 MPa value for quartzite
[Kirby and Kronenberg, 1987]. Bos and Spiers [2002] have
argued that very weak phases such as micas or albite provide
a good approximation. It should be also noted that for the
rather differential stresses of our problem (<1–5 MPa,
equation (5)), diffusion creep prevails, resulting in viscosity
values that are much smaller than for dislocation creep.
[20] For these reasons, we have selected a flow law that

falls in between Chester’s [1995] lower bound and common
estimates for wet granite (Table 2). We have also tested
harder granite rheologies for comparison (Appendix A and
Table 2). Finally, we have used conventional elastic and
brittle parameters (Table 2). We have used the same flow
laws for both the magma body and surrounding crust,
implying that rheological contrasts between the two media
are due to temperature differences only.
3.2.3. Viscosity Range
[21] Most available numerical schemes have difficulties

with viscosity contrasts in excess of 105, which may
generate problems for a realistic model. In this study, there
is no such limitation. However, numerical stability requires
that the time step is kept below the propagation time of
elastic waves and below the Maxwell relaxation time for the
smallest element [e.g., Cundall, 1989]. Accounting for very
small viscosity values thus considerably increases the com-
putation time. Here, we are not interested in short timescale
and small length-scale motions within the molten magma
body (for example, convective currents). For the bulk
deformation pattern around the rising and deforming body,
it is sufficient to impose an internal viscosity 2–3 orders of
magnitude smaller than the host rock viscosity [see, e.g.,
Bittner and Schmeling, 1995]. Smaller viscosity values
would not affect the results, as shown, for example, by
equation (1). For these reasons, we introduced a lower
viscosity cutoff. We tested values in the range of 1015 Pa
s to 1019 Pa s. Crustal viscosity values for our background
geotherms do not fall below 1019–1020 Pa s [e.g., Burov

and Cloetingh, 1997], and we found no significant differ-
ences between calculations with viscosity cutoffs <1018 Pa s.
All calculations reported here were made with a safe cutoff
value of 5  1016 Pa. Note that this only affects the internal
circulation within the magma body and that the external
medium behaves as predicted by the flow law for all
temperatures. In this study, the viscosity contrast between
hottest material at the base and coldest material at the brittle
transition was as high as 1011, which ensures that diapir
ascent is handled in a correct way.
3.2.4. Density
[22] We consider two crustal layers with densities r1 =

2700 kg m�3 and r2 = 2800 kg m�3. The diapir is
characterized by density rd and initial temperature contrast
�T. The density contrast is defined to be �r = r1 � rd. It is
clear that some silicic magmas eventually settle at a neutral
buoyancy level, but this is not necessarily true in all cases.
[23] Density values for rhyolites and granites, corre-

sponding to molten and solidified silicic material, may be
as low as 2300 kg m�3 and 2500 kg m�3, respectively
[Carmichael, 1989] (Table 1). Granites and diorites have
densities of 2660 ± 60 kg m�3 and 2860 ± 120 kg m�3,
respectively. Gneisses have densities of 2700 ± 90 kg m�3

[Judd and Shakoor, 1981]. Thus silicic magmas may clearly
be significantly less dense that upper crustal rocks. Adding
the effect of temperature (at least 50 kg m�3), it appears that
values of 100–200 kg m�3 for the density contrast are quite
representative. The largest value considered in this paper
(400 kg m�3) is an upper bound but it is not unrealistic:
some gneisses have densities of up to 3150 kg m�3.
3.2.5. Temperature Structure
[24] We have used an initial diapir temperature contrast

of �T = 500�C. Instead of varying both the temperature
contrast and the background geotherm, we kept �T at the
same value and changed the background geotherm. The
resulting initial magma temperature at 20 km depth was
Td = 800�C–1000�C. These values are appropriate for
most silicic magmas. Higher temperatures (e.g., for
basalts) would enhance local heating of host rocks around
the diapir with predictable results.
3.2.6. Boundary and Initial Conditions
[25] The upper boundary behaves as a free surface and

may be subjected to erosion (Appendix A and Table 2). At
the lower boundary, shear stresses are kept to zero and
normal stresses are calculated as a function of basal deflec-
tion topography using the isostatic approximation (corre-
sponding to so-called ‘‘Winkler’’ restoring forces). At the
lateral boundaries, velocities are zero and pressures are
equal to lithostatic values.
[26] In order to visualize bulk deformation, the uppermost

crustal layer have been split into two different units identi-
fied by different colors in the figures. We took two different
initial geotherms corresponding to ‘‘cold’’ and ‘‘hot’’ litho-
sphere as appropriate for cratons and tectonically active
regions respectively. These two geotherms correspond to
different values of the mantle heat flow and the same average
heat production, and can be characterized by the temperature
at 20 km depth, or by the temperature (and strain rate)
controlled depth of the regional brittle-ductile transition. In
these two cases, in the absence of local thermal perturba-
tions, the regional brittle-ductile transition roughly follows
the 300�C isotherm and lies at depths of about 10 and 20 km,
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respectively. We shall show that ascent rates are weakly
affected by the background geotherm because they depend
on the local temperature field in the vicinity of the diapir.
[27] At time t = 0, an initially spherical body is emplaced

at 20 km depth and is allowed to rise. Model parameters
were systematically varied in order to derive some clear
understanding of the effects involved. We have varied the
chamber dimensions, the initial temperature contrast (via
variation of the background geotherm) and the composi-

tional (chemical) density contrast between the magma body
and surrounding crust.

4. Dynamics of Ascent Through Brittle-Ductile
Crust

4.1. A Reference Calculation

[28] We compare results of numerical experiments for
various initial magma chamber sizes, background geo-

Figure 4. Calculations for a diapir with diameter d = 10 km and density contrast �r = 100 kg m�3, in a
hot background geotherm. The values of all parameters are given in Table 2. (left) Temperature field.
(right) Bulk deformation pattern with arrows for local velocity vectors. To better trace crustal deformation,
the upper crustal layer is split into two physically identical units shown with two different colors.
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Figure 5. (a) Profiles of vertical velocity through the center of the diapir as a function of depth for the
model of Figure 4. Solid circles indicate the top of the diapir. (b) Vertical temperature profiles through the
diapir center as a function of depth for the model of Figure 4. Square indicates that the local brittle
strength has been exceeded.
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therms, and density contrasts. We describe one reference
calculation in detail, with an initial diameter d of 10 km
and a moderate density anomaly (�r = 100 kg m�3) in hot
lithosphere. This corresponds to high efficiency for ascent:

the large volume implies both a large buoyancy force and
a large initial heat content, and surroundings are hot.
Figure 4 shows the temperature distribution and bulk
deformation at several different times. For such a magma

Figure 6. Calculations for a diapir with diameter d = 10 km and a large density contrast �r = 400 kg
m�3, in a hot background geotherm. The values of all parameters are given in Table 2. (left) Effective
shear stress (second stress invariant, see Appendix A). Note that large stresses develop near the surface,
which lead to faulting. (middle) Temperature and velocity field. The diapir continues to rise when it has
cooled below magmatic temperatures. (right) Bulk deformation pattern. To better trace crustal
deformation, the upper crustal layer is split into two units with identic properties but marked with two
different colors. Brittle faulting allows a plug of diapir material to reach the surface. Note the changes of
dip for the diapir boundary and the poorly developed ‘‘root’’ at the base. The initial layered crustal
structure is almost completely restored beneath the diapir.
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chamber, one may expect the thermal anomaly to dissipate
in time t � d2/k � 0.8 Myr (with k = 4  10�6 m2 s�1).
It is instructive to compare the bulk deformation map,
which shows how material boundaries have moved and
deformed, and the thermal field. The initially spherical
body starts deforming significantly when it is at a depth
about equal to its diameter (i.e., 10 km). At t = 250 kyr,
the rising body has been flattened and rises at a reduced
rate. The temperature field is characterized by a mush-
room-shaped anomaly with a hot tail beneath the reservoir
due to the heated ascent path. At later times, the ascent
velocity is small and heat diffusion acts to smooth out the
thermal anomaly (Figures 4 and 5). Another effect is that
erosion becomes significant, i.e., is able to erode away
material at a velocity which is comparable to the uplift
velocity of the upper surface. The body stalls at a depth of
�5 km, i.e., close to the brittle-ductile transition (Figure 5).
The moderate density anomaly is not sufficient to activate
important faulting and there is no surface expression save
for some moderate uplift.
[29] The diapir has entrained material from the lower

crustal layer into the upper layer (this is shown by the thin
yellow sliver which lines up the diapir margins in Figure 4).
Another feature is that the velocity field is characterized by
two large eddies which involve material from both the
diapir interior and its surroundings. This internal circulation
has been used to define the petrological signature of diapiric
ascent, a characteristic zonation such that the core facies is
repeated in marginal units [e.g., Schmeling et al., 1988;
Molyneux and Hutton, 2000]. One should note, however,
that this may get overprinted by late stage deformation with
completely different characteristics.
[30] The diapir continues to rise even when it has cooled

significantly, and the latest stages of ascent are characterized
by flattening deformation, such that material from the lower
end of the diapir continues to rise while the top barely
moves. The edges of the diapir therefore experience a large
component of horizontal motion, and deformation markers
in country rock record some expansion. This brings in the
ancient debate about ballooning [e.g., Molyneux and Hut-
ton, 2000], which we discuss in section 5.4.

4.2. Brittle Deformation

[31] Brittle deformation gets activated when the differ-
ential stress exceeds the pressure (i.e., depth) dependent
yield strength limit. As shown in equation (13), this stress is
largely conditioned by the buoyancy force exerted by the
magma body, which increases with the body size and its
density contrast. The effect of brittle behavior can be
illustrated by comparing the previous calculation with two
different ones. In one of those, we take the same initial body
size (do = 10 km) but use a higher density contrast (�r =
400 kg m�3). The second one is identical but has no
plastic(brittle) behavior, i.e., only account for viscous (duc-
tile) and elastic deformation.
[32] We first consider a larger density anomaly (�r =

400 kg m�3). The initial stages are almost identical, with in
particular similar thermal evolutions (Figure 6). However,
at large density contrast, large forces are exerted on the
brittle upper crust and activate faulting. This completely
modifies the reservoir shape, which intrudes the surround-
ings along bounding faults (Figure 7). Similar deformation

patterns have been found in laboratory experiments involv-
ing brittle material [Roman-Berdiel et al., 1995]. A key fact
is that the intrusion process occurs when the reservoir is
cold, implying strong mechanical coupling between reser-
voir and surroundings. In this case, there is less internal
circulation within the diapir (Figure 7). Values of ascent
velocity and temperatures are given in Figure 8. Brittle
deformation clearly affects the final pluton shape. It also
affects the entrainment characteristics. The close-up of
Figure 7a shows how material from the lower layer is first
entrained by the rising diapir and then gets dragged down
by the return flow. Note the complex diapir shape at the
end, with different dips for the margins depending on the
structural level within the diapir and a small root zone
below the main body.
[33] In a second calculation with the same large density

contrast, we did not allow for brittle deformation (Figure 9).
Once again, the initial stages are almost identical, and
differences appear when the body reaches the level of the
brittle-ductile transition. Without brittle deformation, the
ascending body is blocked by the high viscosity of shallow
crustal rocks. The laterally extensive upper surface of the
diapir undergoes a Rayleigh-Taylor instability and adopts a

Figure 7a. Close-up of the deformation pattern and
velocity field for the diapir of Figure 6. Note that the
internal circulation changes as the diapir breaks through the
roof zone in brittle fashion.
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different shape. Two bulges develop at the edges, and the
central area experiences downsagging. It is worth to note
that same erosion law was applied in both calculations.
Hence it appears that erosion alone is not sufficient for near
surface emplacement of magma bodies. Yet its role
becomes crucially important when it is coupled with brittle

deformation (Figure 9) [see also Burov and Poliakov,
2001].

4.3. Density Contrast

[34] In a series of calculations, we have used different
values for the density contrast and have kept all other

Figure 7b. Strain rate and temperature fields for the diapir of Figure 6. Faults develop in the uppermost
crust when the local brittle strength is exceeded. Note that faulting occurs first in an inverse mode when
the diapir is still far from its final emplacement depth and that it switches to a normal mode. When the
diapir is at shallow depth, the temperature field develops a pointed structure due to the brittle ascent
mechanism and is reminiscent of that for a spreading ridge.

ECV 1 - 12 BUROV ET AL.: ASCENT AND EMPLACEMENT OF MAGMA BODIES



Figure 8. (a) Profiles of vertical velocity through the center of the diapir as a function of depth for the
model of Figure 6. Solid circles indicate the top of the diapir. (b) Vertical temperature profiles through the
diapir center as a function of depth for the model of Figure 6. Square indicates that brittle strength has
been exceeded.
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parameters at the same values. In all cases, the initial stages
of ascent are quite similar to those of the reference case
(Figure 10). However, for larger buoyancy, the ascent rate is
larger. The thermal anomaly dissipates in the same amount
of time, and hence allows ascent over a larger distance. As
regards stresses above the reservoir, two effects reinforce

one another and act to enhance brittle deformation: with
increasing density contrast, buoyancy-induced stresses are
larger and the final overburden thickness is smaller.
[35] Changing the bulk reservoir buoyancy therefore

affects the final emplacement depth and the final emplace-
ment mechanism. With increasing buoyancy, the final

Figure 9. Comparison between two different assumptions for crustal deformation mechanisms.
Calculations correspond to the diapir of Figure 6. (left) Brittle-elastic-ductile mechanisms (same as Figure
5). (right) Calculations with no brittle deformation (viscoelastic rheology). Note that the diapir flattens
markedly and stops at a larger depth. The laterally extensive roof develops a Rayleigh-Taylor instability,
with the dense uppermost crust collapsing into the diapir. This enhances flattening. (middle) Surface
topography for the two models. The amplitude of anomalous topography is smaller for the model without
brittle deformation. The ‘‘collapse’’ of roof rocks into the diapir is marked by a local depression at the center.
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emplacement depth decreases. This also acts to activate
faulting, and hence the buoyant body may ultimately reach
the surface. For the present model, we found that brittle
faulting requires reservoirs larger than about 7.5–10 km as
well as large density contrasts.

4.4. Reservoir Size

[36] The reservoir size has a major effect on the results,
because it determines the total buoyancy force involved, as
well as the total amount of heat available for softening
crustal rocks. It also determines which bodies may activate
brittle faulting. Emplacement depth is a strong function of
reservoir size (Figures 10 and 11).

4.5. Background Temperature Field

[37] Deformation of surrounding rocks depends on tem-
perature and hence on the background thermal crustal
structure. However, results for the hot and cold cases differ
only slightly (Table 2 and Figure 11). The reason is that
deformation gets focused in the thermal/ductile aureole
around the ascending body, where temperatures and strain
rates are much higher than background values and hence is
not very sensitive to conditions in the far field.

5. Implications

5.1. Limitations of the Present Model

[38] Results have been obtained for a restricted range of
parameters and crustal models and are summarized in
schematic form in Figure 12. A single rheological law
corresponding to ‘‘dry quartz’’ was used. It was not deemed
useful to allow for other crustal rheologies because the
results would change in a predictable manner. We have
chosen to impose that, at the same temperature, the diapir
material and surrounding rocks have the same strength. This
is appropriate for the upper crust, but one may imagine

different behaviors with surrounding rocks that have stron-
ger or weaker rheology than the diapir. For detailed geo-
logical analysis, one should proceed on a case-by-case
basis. For the sake of simplicity, we have not included
latent heat and have ignored density changes due to crys-
tallization and due to pressure dependence of the coefficient
of thermal expansion. Thus it is not possible to discuss
petrological issues in great detail.
[39] We have not included a far-field tectonic stress field.

This would present no difficulty with the numerical code
but would introduce yet another set of variables. It is clear
that magmatic and plutonic activity occur in geologically
active regions, and hence that one must discriminate
between deformation due to the ascent of the magma body
and superimposed regional deformation. We emphasize,
however, that ascent proceeds even if the diapir is com-
pletely solid, which implies that solid-state deformation
must not necessarily be attributed to tectonic stresses.
[40] It is worth emphasizing that the ignored effects

(latent heat, crystallization, thermal expansion and regional
extensional tectonic stress) would increase ascent rates and
decrease the mechanical resistance of surrounding rocks,
thus enhancing the emplacement mechanisms considered in
this study.

5.2. Final Emplacement

[41] The calculations illustrate that emplacement depth
may be controlled by temperature, through its effect on
rheology. Indeed, many granitic plutons are associated with
negative gravity anomalies, which demonstrates that they
are not at a neutral buoyancy level and got stuck when they
were still rising [e.g., Guineberteau et al., 1987]. Here
temperature does not refer to that of country rock in the
far field but to the transient thermal evolution in a thin

Figure 10. Depth to the chamber top at different times for
different initial diapir sizes and density contrasts.

Figure 11. Depth to the chamber top at a time of 0.3 Myr
for different initial diapir sizes, density contrasts, and two
different background geotherms (see Table 2).
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aureole around the diapir. Thus emplacement depth cannot
be determined by static considerations and must be solved
for in a fully dynamic framework accounting for transient
heat exchange between diapir and country rock, as has been
attempted here. In reality, for given crustal structure and
rheology, emplacement depth must be thought of as a
function of diapir size and density anomaly. For such
‘‘thermally controlled’’ emplacement conditions, there are
simple systematics. Only large plutons with diameters
starting from 5 km are able to reach shallow crustal levels,
and there is a relationship between pluton size and emplace-
ment depth. Furthermore, the buoyant body flattens in a
predictable way and there is a relationship between the final
aspect ratio and the emplacement depth. Shallow emplace-

ment conditions in the ductile regime involve horizontal
spreading with little upward roof displacement (Figure 4).
[42] Plutons formed by dike injection should show differ-

ent systematics. Here we restrict the discussion to flat plutons
at relatively shallow crustal levels. There is strong evidence
that laccoliths are fed from dikes and that they get emplaced
in nearly neutral buoyant conditions, as shown by the lack of
gravity anomalies over them [Corry, 1988]. In fact, dikes
may overshoot the neutral buoyancy level [Lister and Kerr,
1990] and hence may even get quenched in surroundings that
are less dense. Laccoliths clearly grow by upward displace-
ment of overlying strata [Corry, 1988]. Such characteristics
are different from those for thermally controlled emplace-
ment. Consider for example tabular granites. These seldom
exhibit uplifted roof rocks and are commonly associated with
negative gravity anomalies [Cruden, 1998], features which
are both compatible with the present model.

5.3. Brittle Faulting

[43] Except in extreme cases (large magma bodies and
large density contrast), the ascent of a diapir involves little
brittle faulting. Emplacement is thus achieved mostly in a
ductile regime, however it occurs above the depth of the
regional brittle-ductile transition, which is at least 10–15
km. This illustrates again the important fact that the brittle-
ductile transition depends on local values of temperature
and strain rate. Magma diapirs heat up their surroundings
and hence augment the range of ductile behavior. Brittle
faulting is most significant late in the ascent history when
the body has already solidified and thus can apply important
shear stresses on roof rocks (due to flattening), in addition
to normal stresses due to buoyancy. This result is of course
valid only for the assumptions and set of physical properties
used in the calculations, but it is straightforward to evaluate
the consequences for other choices. For example, country
rocks with softer rheologies (‘‘wet quartz’’) would allow
more rapid motion, less cooling during ascent, and hence
shallower emplacement.
[44] Shallow emplacement involving brittle deformation

is characterized by predominantly vertical motion at the top
of the diapir (Figures 6 and 7). However, it is useful to note
that there is also some ductile deformation at the base and
hence that the relative importance of ductile and brittle
deformation may vary with depth in the same unit.

5.4. Ballooning

[45] At shallow levels, deformation of host rocks in the
ductile regime has little to do with ascent and is charac-
terized by horizontal spreading. In this late phase, the
chamber walls move laterally and hence lead to ballooning
structures in host rocks. In this sense, ballooning may be
seen as an inevitable consequence of emplacement near the
surface (Figures 4 and 7). Here, ‘‘near the surface’’ means
within about two initial diapir diameters from the surface.
Thus, at depths in the range (5–20 km), one expects
ballooning structures for plutons with diameters in the range
of 5–10 km. Those conditions encompass most examples of
geological relevance.

5.5. Caldera Resurgence and Peripheral Bulging

[46] The calculations emphasize that a buoyant body
continues to rise when it has solidified. However, at such

Figure 12. Summary of the various stages of diapir
emplacement in the upper crust. Phase I is such that the
diapir rises in a ductile regime with large velocities due to
strain and thermal softening of surrounding rocks. In phase
II, the diapir induces weakening and faulting at shallow
levels and intrudes the uppermost crust.
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late stages, it cannot soften the surrounding rocks signifi-
cantly, partly because of decreasing thermal energy and
density contrast and partly due to colder and stiffer sur-
rounding rock. Hence the ascent velocity becomes very
much smaller than in the magmatic stage. According to our
calculations, such a late phase may last for several hundred
thousand years. A diapir with an initial diameter of 10 km,
takes about 50 kyr to rise from 15–20 to 5 km in the ductile
zone but another 50 kyr to rise from 5 to 4 km in the brittle-
ductile zone (Figures 6 and 8). Smaller bodies would of
course be even slower. In an ancient volcanic area, present-
day deformation may therefore be associated with an extinct
magmatic reservoir. Caldera resurgence [Lipman, 1984],
which may be recorded several hundred thousand years
after a climatic volcanic event, may be due to such late stage
motion. In all cases, the experiments predict that a solidified
magmatic body may keep some vertical motion for as much
as 2 Myr. Naturally, there is no time limit for reactivation by
external thermal or erosion events.
[47] In order to investigate large caldera systems, such as

Yellowstone for example, we have carried out a calculation
with a very large buoyant body with d � 20 km. Because of
space limitations, it was not possible to start with an initially
spherical shape and we have taken instead an ellipsoid
(Figure 13a). This large volume flattens markedly as it
rises. The upper interface extends over large horizontal
distances and becomes unstable, with two peripheral bulges
growing upward and downsagging in the central area

Figure 13a. Calculations for a very large diapir (d � 20 km), large density contrast (�r = 400 kg m�3)
and a hot background geotherm. Rayleigh-Taylor instabilities develop on the roof region with three
bulges growing upward and downsagging in between. Two zones of inverse faulting develop.

Figure 13b. Schematic diagram for the late stages of the
previous calculation. Faulting has switched to the normal
model and delineates a central depression. The middle bulge
has been suppressed and only two peripheral bulges grow.
There is downsagging in the central area.
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(Figures 13a and 13b). This is strongly reminiscent of the
present-day deformation pattern at Yellowstone, which is
characterized by two resurgent domes and deflation else-
where [Dzurisin, 2000]. It is clear that the situation at
Yellowstone is more complicated than the relatively simple
model developed here. However, gravity data do demon-
strate that the caldera is underlain by low density material,
which may well be silicic pluton [Smith et al., 1974;
Lehman et al., 1982], and there is no reason to assume that
this buoyant body remains completely immobile.

6. Conclusions

[48] We have reevaluated the dynamics of diapiric ascent
in the upper crust using a thermomechanical model which
allows for ductile and brittle deformation mechanisms as
well as for deformation of the buoyant body.
[49] For thermally activated rheology, the final emplace-

ment depth may be determined by the heat budget and a
diapir may stall in dense country rock. Brittle behavior only
becomes important at shallow crustal depths and hence is of
no importance for diapirs which get emplaced at larger
depths. The depth of emplacement is a decreasing function
of diapir size and density anomaly. There are two different
relationships between emplacement depth and diapir size,
depending on the dominant late stage deformation mecha-
nism (ductile or brittle). For typical diapir radii (5–10 km),
predicted emplacement depths may be as shallow as a few
kilometers depending on the density contrast. In all cases,
surface erosion cannot be neglected but plays a relatively
minor role.
[50] Diapir ascent rates in the ‘‘purely ductile’’ regime,

between depths of about 30 and 10 km, may be as high as
0.1–5 m yr�1. In the ‘‘brittle-ductile’’ regime at shallower
depth (about 10 to 5 km), ascent rates drop to values in the
0.01–0.05 m yr�1 range. Finally, in the ‘‘brittle’’ regime,
which is only important for diapirs which are able to rise
within about 5 km of Earth’s surface, ascent rates are still
smaller and take typical values of a few millimeters per
year. These estimates must be regarded as lower bounds
because we have chosen to err on the conservative side
(e.g., no latent heat, fixed thermal expansion, high rock
cohesion, moderate erosion, no fluids, relatively low initial
magma temperature and so on). The model calculations of
this paper emphasize the importance of late stage motion at
temperatures below magmatic values. Ascent and defor-
mation may proceed for more than 1 Myr with a cold
pluton.
[51] Ballooning characteristics may be generated by flat-

tening. Predicted surface deformation features (topography,
vertical and horizontal surface rates, stress and fault distri-
bution) may help constrain the underlying magma reservoir
geometry, as well as its emplacement dynamics.

Appendix A: Numerical Model

[52] The ‘‘2.5-D’’ numerical scheme is a modified version
of the PAROVOZ code [Poliakov et al., 1993a] based on
the FLAC algorithm [Cundall, 1989]. This code operates on
a 2-D Cartesian frame but all internal stress-strain relations
are solved in full 3-D formulation, which allows to account
for out-of-plane components. The code is a dynamic fully

explicit time-marching large-strain Lagrangian algorithm
that solves the full Newtonian equations of motion:

r
@

@t

@u

@t

� �
� divs� rg ¼ 0 ðA1Þ

coupled with constitutive equations of kind:

Ds
Dt

¼ F s; u;r @u

@t
; . . .T . . .

� �
ðA2Þ

and with those of heat transfer (diffusion and advection):

rCp@T=@t þ _urT � div krTð Þ � Hr ¼ 0 ðA3Þ

and surface erosion (linear or nonlinear diffusion):

@hs=@t �r kerhsð Þ ¼ 0; ðA4Þ

where u, _u, s, g are the respective vector-matrix terms for
the displacement, displacement velocity, stress, acceleration
due body forces, and thermal conductivity; t, r, Cp, T, k, Hr,
hs, and ke denote time, density, specific heat, temperature,
thermal conductivity, internal heat production, surface
elevation and coefficient of erosion, respectively. The terms
@/@t, D/Dt, and F denote a time derivative, an objective time
derivative, and a functional, respectively.
[53] The numerical scheme provides velocities at mesh

points, which permit to calculate element strains. These
strains are used in the constitutive relations to calculate
element stresses and equivalent forces, which form the basic
input for the next calculation cycle. The Lagrangian coor-
dinate mesh moves with the material, and at each time step
the new positions of the mesh grid nodes are calculated and
updated in large strain mode from the current velocity field
using an explicit procedure (two-stage Runge-Kutta). To
solve explicitly the governing equations, the Parovoz
(FLAC) method uses a dynamic relaxation technique by
introducing artificial masses in the inertial system. Adaptive
remeshing technique developed by A. N. B. Poliakov and Y.
Podladchikov [Poliakov et al., 1993a, 1993b] permits to
resolve strain localizations leading to formation of the
faults. The solver of the FLAC method does not imply
any inherent rheology assumptions, in contrast with the
most common finite element techniques based on the
implicit displacement method. The main interest in this
method thus refers to its capability to model physically
highly unstable processes and handle strongly nonlinear
rock rheologies in their explicit form of the constitutive
relationship between strain and stress.

A1. Explicit Plastic-Elastic-Viscous Rheology

[54] In contrast to conventional fluid dynamic ap-
proaches, where nonviscous terms such as plastic (brittle)
and elastic terms are replaced with pseudoplastic and
pseudoelastic viscous rheology terms, the present method
treats these terms in explicit way. The elastic-ductile-plastic
rheology chosen for crust and diapir is derived from rocks
mechanics data. Mohr-Coulomb plasticity, elastic and vis-
cous (linear or nonlinear) terms are introduced explicitly, in
a way that any element in the mesh has the potential for
elastic, viscous, and plastic deformation. The total strain
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increments in each numeric element are defined by a sum of
elastic, viscous and brittle strain increments. The corre-
sponding constitutive behavior is schematically represented
as usual serial connection of an elastic spring, of a viscous
dashpot and of a plastic frictional block [e.g., Cundall,
1989].

A2. Plastic (Brittle) Behavior

[55] The brittle behavior of the uppermost lithosphere is
given by experimentally derived Byerlee’s [1978] law,
which describes time-independent discontinuous frictional
slip on a pervasively fractured rock volume:

t � 0:85sn; sn � 200MPa ðA5Þ

t � 0:5MPaþ 0:6sn; sn > 200MPa ðA6Þ

or

s1 � s3 � 4s3; s3 � 110MPa ðA7Þ

s1 � s3 � 2:1s3 þ 210MPa; s3 > 110MPa; ðA8Þ

where t is shear stress and sn is effective normal stress, s1
and s3 are principal stresses. Byerlee’s law matches a
pressure-dependent Mohr-Coulomb material with friction
angle f and cohesion jC0j [e.g., Gerbault et al., 1998]:

tj j ¼ C0 � tanfsn; ðA9Þ

where sn is normal stress sn = P + sII
dev sin f, P is the

effective pressure, sII
dev is the second invariant of the

deviatoric stress, or effective shear stress. Condition of
transition to brittle deformation (function of rupture f ) reads
as: f = sII

dev + P sin f � C0 cos f = 0 and @f /@t = 0. In terms
of principal stresses, the equivalent of the yield criterion
reads as

s1 � s3 ¼ � sinf s1 þ s3 � 2C0 tan
�1 f

� �
: ðA10Þ

Parameters f = 30�–33� and jC0j = 5–20 MPa represent
Byerlee’s law for most rocks. In case of important fluid
pressure, sn is reduced to s0n = sn � Pf, where Pf is fluid
pressure.

A3. Elastic Behavior

[56] The elastic part is defined using commonly inferred
values of elastic constants for lithospheric rocks, that is with
Young modulus, E, of 75 GPa and Poisson’s ratio, u, of 0.25
[e.g., Turcotte and Schubert, 1982]:

sik ¼ ðlþ 2m3�1Þelldik þ 2m eik � 3�1elldik
� �

; ðA11Þ

where l and m are Lamé’s constants (Table 2) related to E
and u as l = Eu [(1 + u)(1–2u)]�1; m = E(2(1 + u))�1, d is
Kronecker’s delta.

A4. Viscous (Ductile Creep) Behavior

[57] A non-Newtonian ductile rheology [e.g., Kohlstedt et
al., 1995] is presented by power law stress and exponential
temperature dependence of the strain rate:

_eij ¼ AsdevII sn�1
ij exp �Q=RTð Þ; ðA12Þ

where _e is the strain rate, sII
dev = 0.5(sijsij)

1/2 is the effective
stress (second invariant of the deviatoric stress s), A is the
material parameter, n is the effective stress exponent, Q is
the creep activation energy, T is the absolute temperature,
and R is the universal gaz constant. The variables A, n, Q
describe the properties of a specific material (Table 2).
Creep deformation is strongly different from that of
constant viscosity or temperature-dependent Newtonian
fluid because the effective viscosity of a power law
material may vary within 10 orders of magnitude as a
function of the deviatoric stress even at adiabatic tempera-
ture conditions.

A5. Brittle-Ductile Interactions

[58] The ductile-elasto-brittle rheology used here is repre-
sented as a serial connection of an elastic string component,
frictional block component and a nonlinear viscous dashpot
component. The total incremental strain in such a system is a
sum of incremental viscous, plastic and elastic strains in each
of the components, whereas the steady state component
stresses are equal. On each time step, the algorithm uses
current solution for strain and strain rate in each numerical
element to predict potential incremental stress in each of the
three rheological components for the next time step. The
component which predicts lowest stress for given strain
effectively dominates the overall behavior of the grid ele-
ment. Exact constitutive relations for each component are
solved on each time step, which makes the algorithm very
robust. The behavior of each rheological component plugged
in a chain may be completely different from its stand-alone
behavior. For example, pure viscous deformation does not
depend on strain, but in elastoviscous material, the initial
strain controls the viscous stress and strain rate. In a serial
viscoplastic medium, the plastic stress limits the viscous
stress (and vice versa), and consequently the viscous strain
rate. Thus a plastic component, which is alone strain rate-
independent, controls, and is being controlled by, the strain
rate in a viscoplastic couple. For this reason, in the vicinity of
the brittle-ductile transition, the velocity field in both ductile
and brittle zones is controlled by the behavior of all, ductile,
brittle, and elastic parts. This behavior is difficult to reduce to
that of a simple single-phase or biphase material such as
viscous, viscoelastic, or plastoelastic.

A6. Free Surface Boundary Condition

[59] The code handles explicit free surface boundary
condition. Thus different from a number of existing codes,
the surface velocity and displacement are computed in a
straightforward way, without simplifying assumptions.

A7. Surface Erosion and Sedimentation

[60] Linear or nonlinear diffusion equation (A4) well
represent so-called short-range surface processes associated
with small scale topography elevations [e.g., Avouac and
Burov, 1996; Burov and Cloetingh, 1997]. In particular, the
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diffusion equation assures a number of important properties
of the surface processes: (1) dependence of the local erosion
rate on surface curvature and slope, so that actively deform-
ing topography is subject to faster erosion; (2) mass con-
servation; and (3) smoothing of the surface with time in the
absence of active subsurface deformation.
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