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Thermomechanical behavior of large ash flow calderas 

Evgenii B. Burov 1 and Laurent Guillou-Frottier 
Geology and Metallogeny Laboratory, BRGM, Offdans, France 

Abstract. The fundamental thermal and mechanical processes that occur within 
the "ash flow caldera-magma chamber" systems remain largely enigmatic. To 
date, the only models of caldera collapse are simple, mostly elastic or viscoelastic 
mechanical models that can predict some of the conditions preceding the collapse. 
They cannot, however, predict the collapse itself because they are incapable either of 
reproducing the formation of faults or of accounting for the brittle-ductile transitions 
and fault-related thermal anomalies. We have constructed analytical and numerical 
therrnomechanical models that account for both elastic-plastic-ductile rheology and 
physical properties of the caldera rocks. The overpressured magma is evacuated 
through a central vent and transforms into ash flow units deposited within the 
forming caldera. Brittle deformation, faulting, and subsequent collapse of the 
structure are reproduced. The results show that in the absence of a regional stress 
field the collapse on both sides will occur only for aspect ratios (i.e., caldera diameter 
to the depth of the magma chamber) exceeding 5 and that internal embedded faults 
may also appear when the aspect ratio exceeds 10. Thermal conductivity contrasts 
in ash flow calderas give rise to strong heat refraction that localizes deep seated 
thermal anomalies to the outer sides of the faults. In the presence of regional 
extension the border faulting can be attenuated or disappear, and the faults tend 
to localize around the central part of the chamber roof. Coupled therrnomechanical 
modeling suggests that the outer sides of the border faults have high trapping 
capabilities for hydrothermal fluids. The geometry of the brittle-ductile transition 
largely controls that of the fractured zones within and around the chamber roof, 
thus justifying a new "mechanical definition" of magma chamber geometry. 

1. Introduction 

Growing interest in the exploration potential of ash 
flow calderas has stimulated numerous modeling studies 
that are mostly focused on fluid flow problems such as 
localized hydrothermal circulation through the inten- 
sive fracture networks typically formed in the magma 
chamber roof and around the border faults. How- 

ever, recent studies in related research fields (for ex- 
ample, modeling of mineralized fluid flow in sedimen- 
tary basins) have demonstrated the necessity of taking 
into account stress, fracture, and temperature evolution 
within the whole tectonic unit involved because these 

can impose critical conditions on localized fluid circula- 
tion. Yet many processes taking place in magmatic sys- 
tems, including the initiation of border faulting, mech- 
anisms of caldera collapse, and related changes in the 
thermal and stress field, are still poorly investigated, al- 
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though they present quite important geodynamic prob- 
lems. 

Ash flow (or ignimbrite) calderas are thought to form 
when large eruptions remove tremendous quantities of 
magma from shallow silicic magma chambers beneath 
volcanic cones. During a major eruption, which com- 
monly destroys the volcanic structure, the amount of 
extruded magma may be so important that the resulting 
mass deficit in the chamber, combined with the weight 
of the overlying surface ash flow deposits, leads to the 
inward collapse of the chamber roof and to the forma- 
tion of a caldera. 

Studies on ash flow calderas over the past half cen- 
tury have mostly focused on mineralogy, petrology, and 
structural geology [Williams, 1941; Smith, 1960; Steven 
and Lipman, 1976], complemented by only a few, chiefly 
conceptual, models of caldera formation and evolution 
[Smith and Bailey, 1968]. Although a number of sim- 
plified mechanisms of caldera formation have been sug- 
gested and investigated since the 1970s [e.g., Druitt and 
Sparks, 1984], the processes leading to various types 
of ash flow caldera or different subsidence styles imply 
many parameters that are difficult to include in a single 
scheme: caldera diameter, volume of ejected material, 
geometry of the magma chamber, refeeding or cooling of 
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the magma reservoir, regional stress field, erosion rate, 
etc. 

The recent review by Lipman [1997] proposed five 
end-member subsidence scenarios (Figure 1) for 
calderas: Figure la, "plate" or "piston-like"; Figure lb, 
"piecemeal"; Figure lc, "trapdoor"; Figure ld, "down- 
sag"; and Figure le, "funnel". According to this clas- 
sification, the plate or piston-like subsidence is associ- 
ated with large calderas formed by voluminous erup- 

a) 

"Plate" or "Piston-like" 
subsidence 

b) 
"Piecemeal" subsidence 

c) 
"Trapdoor" subsidence 

d) 
"Downsag" subsidence 

e) 
"Funnel" caldera 

Figure 1. Five scenarios for caldera subsidence, 
adapted from Lipman [1997] and T. Druitt, (personal 
communication, 1998). The shapes and sizes of the 
magma chambers vary from one case to the other, indi- 
cating probable strong interplays between caldera sub- 
sidence style and reservoir geometry. 

tions from large shallow magma chambers, whereas the 
trapdoor subsidence could derive from smaller erup- 
tions, associated with an asymmetrical magma chamber 
or with a regional tectonic regime. Funnel calderas are 
associated with small-scale (< 2-4 km) structures that 
would develop in relatively weak crusts. The great di- 
versity of ash flow caldera types is difficult to interpret 
from field observations only, because one can imagine 
several independent mechanisms that could produce a 
similar collapse scenario; the physical links between the 
subcrustal processes and their surface expression have 
not really been investigated. 

Most recent large-scale thermomechanical modeling 
studies of caldera evolution have either considered 

rather simplified scenarios based on the elastic and vis- 
cous rheologies [e.g., Luongo et al., 1991; Gudmundsson 
et al., 1997] often originating from some older and not 
quite self-consistent studies, or they have been focused 
on problems related to magma chamber emplacement 
and surface deformation. Some of these models [e.g., 
De Natale et al., 1997; Gudmundsson et al., 1997] pre- 
dict stress concentrations at the borders of the magma 
chamber, which are anticipated to coincide with zones 
of fault initialization. None of the existing numerical 
and analytical models treats the problem of the initia- 
tion and evolution of border faults around the magma 
chamber in a mechanically consistent way, i.e., using re- 
alistic rock rheologies and without predefining fault sur- 
faces or weakness planes. Gudmundsson et al. [1997], 
for example, attempt to predict the location and initi- 
ation conditions of the border faults by modeling stress 
concentrations at the corners of the magma chamber, 
but the elastic rheology and small-strain boundary ele- 
ment method that they used can give only hints, hardly 
real solutions. This point has recently been discussed 
in a number of studies that warn against a direct appli- 
cation of pure elastic or viscous solutions for predicting 
brittle failure zones [e.g., Buck, 1997; Gerbault et al., 
1998]. 

A few geophysical models have been proposed to in- 
vestigate the dynamics of large shallow calderas. One 
of them, a two-stage model by Druitt and Sparks [1984], 
gives a simplified analysis of the relationships between 
the erupted volumes and magma chamber pressures. 
Another, a numerical model by 6'h•ry et al. [1991], can 
be considered at present as the most complete because 
it is based on temperature and stress-/strain-dependent 
plastoviscoelastic rheology. However, this model could 
not resolve the fault localization. It reproduced surface 
uplift and subsidence under specific conditions irrele- 
vant to our study (e.g., fixed magma chamber geome- 
try. Thus none of the existing models really resolves the 
major problems as border fault formation and evolution 
and caldera collapse. 

Calderas are commonly circular or ellipsoidal in 
shape, even in areas of strong regional extension where 
the major (tectonic) normal faults are linear. Well- 
known examples are represented by the Vailes and 



BUROV AND GUILLOU-FROTTIER: THERMO-MECHANICS OF CALDERAS 23,083 

Questa calderas, located along the Rio Grande rift, 
and other nearly circular calderas are described by Of- 
tedahl [1978] within the Permian Oslo rift, in Norway. 
In some cases, the formation of a new small caldera em- 
bedded within an older large caldera can occur several 
million years after the major collapse, as at Rodalquilar- 
Lomilla in southeastern Spain [Rytuba et al., 1990] and 
Platoro-Summitville in Colorado [Lipman, 1984]. Al- 
though the inner "nested" caldera may be geometri- 
cally similar to the outer one (nearly circular or elon- 
gate), this cannot be treated as a general rule; some 
calderas are highly asymmetric or exhibit an asymmet- 
ric dynamic behavior, as at the Toba caldera complex 
in Sumatra [Chesner and Rose, 1991]. 

Pyroclastic eruptions produce voluminous and thick 
ash flow tuffs that originate from shallow silicic intru- 
sions. An idea of the quantities involved is given by the 
Bishop Tuff of the Long Valley caldera, which represents 
about 500 km a of ejected products [Bailey et al., 1976], 
by the deposits within the Julietta caldera, Russia, that 
are more than 1000 rn thick [Strujkov et al., 1996], and 
by the intracaldera tuffs at La Primavera, Mexico [Ma- 
hood, 1980]. The succession of volcanic events lead- 
ing to the presence of thick intracaldera deposits is still 
not completely understood; although caldera collapse 
is commonly associated with the major eruption, recur- 
rent caldera collapse and/or recurrent surface deforma- 
tion have been also deduced for a number of ash flow 

calderas such as Santorini, Greece [Druitt and Francav- 
iglia, 1992], and the Phlegraean Fields, Italy [Bianchi 
et al. , 1987]. 

Detailed hydrological and geothermal studies of the 
hydrothermal systems in ash flow calderas have focused 
on the flow paths of hydrothermal fluids [e.g., Elder, 
1981; Sorey et al., 1991; McConnel et al., 1997]. None 
deal with the "large-scale" processes that, in our defini- 
tion, include the caldera, the magma chamber, and their 
embeddings and involve large time spans; existing stud- 
ies on active calderas such as Long Valley, Yellowstone, 
Taupo, or the Phlegraean Fields only yield information 
on the short-duration behavior. Fortunately, thermo- 
mechanical models can be constrained using petrophys- 
ical data available from abundant field and drilling stud- 
ies. 

In this paper, we investigate a number of the un- 
resolved problems including the formation and deep 
geometry of the caldera faults, the thermal regime at 
depth, and the relationships between the magmatic sys- 
tem and the surface features of ash flow calderas. Our 

analysis is restricted to the effects of the reservoir ge- 
ometry, the surface deposition, and the regional stress 
regime, all of which can affect the style of caldera col- 
lapse [Lipman, 1997]. Our study of thermal and me- 
chanical processes within calderas, has incorporated ex- 
perimentally constrained brittle-ductile-elastic rheolog- 
ical laws and laboratory measurements of thermal con- 
ductivities and densities, as well as the changes in these 
properties during caldera evolution. The first part of 

the work is devoted to the steady state heat transfer 
(reflection and refraction) mechanisms related to the 
thermal conductivity contrasts within caldera settings. 
The second part deals with the physical mechanisms 
that lead to faulting and control the fault geometry, lo- 
calization, and associated pressure/stress field and tran- 
sient thermal effects. Finally, we present and discuss a 
coupled twofold thermomechanical model in which the 
heat diffusion and advection from the magma chamber 
affect the rheology of the caldera-related rocks, result- 
ing in changes to the geometry of the fracture zones. 

2. Physical Properties of Ash Flow 
Caldera Rocks 

2.1. Intracaldera Units 

Recent compilations of thermal conductivity data 
since the preliminary measurements by Smith [1960] 
show that the ash flow tuffs have high but quite vari- 
able porosity: porosity of the ash flow tuffs in the 
Guayabo caldera, Costa Rica, appears to range be- 
tween 3 and 22% [Hallinan and Brown, 1995]; poros- 
ity values as high as 30% are reported for the intra- 
caldera fill sequence of the Valles caldera [Goff and 
Gardner, 1994]; and the Neapolitan Yellow Tuffs of the 
Phlegraean Fields caldera have porosities reaching 50% 
[Ascolese et al., 1993]. The conductivity-porosity his- 
togram shown in Figure 2a (adapted from Clauser and 
Huenges [1995]) demonstrates that the high-porosity 
volcanic rocks (with a mean thermal conductivity k of 
1.9 W m -• K -• are about 1.5-2.0 times less conduc- 

tive than the other rocks, and Figure 2b shows that 
"tuff(ites)" belong to the family of volcanic rocks with 
the lowest possible thermal conductivity. A series of 
measurements in the ash flow tuffs of the Long Valley 
caldera, including the Bishop Tuff, gives k ranges from 
0.8 to 2.2 W m -• K -• for the samples coming from 
shallow wells and a mean value of about 2.2 W m -• 

K -• for the Bishop Tuff [Sorey et al., 1991]. The k val- 
ues for shallow lying tuffs in the Phlegraean Fields are 
lower, between 0.40 and 0.85 W m -• K -1, depending 
on the water content [Corrado et al., 1998]. It must 
be noted that the surrounding rocks have rather high k 
compared to that of the ash flow tuffs; for example, Pa- 
leozoic metasediments of the Long Valley caldera and 
the adjacent granites are characterized by values of 4.2 
and 2.8-3.3 W m -• K -•, respectively. In other words, 
the ash flow tuffs are at least 1.3 times less conduc- 

tive than the surrounding rocks, and this conductivity 
contrast can easily jump to more than 3. 

The high porosity of the ash flow tuffs measured in 
the Taupo volcanic zone [Cole et al., 1998] increases the 
density contrast between the intracaldera units and the 
embedding rocks. Ignimbrites, with density ranges be- 
tween 900 and 2400 kg m -a, are basically less dense 
than other lavas. For example, the ignimbrite den- 
sity in the Taupo volcanic zone is between 1300 and 
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Figure 2. (a) Thermal conductivities of rocks present 
in ash flow caldera settings [from Clauser and Huenges, 
1995]. (b) Quartz-rich rocks present in border faults of 
calderas are conductive material whereas tuff(ite)s are 
poorly conductive material. The effects of porosity (a) 
and pressure are discussed in the text. 

2300 kg m-a; for the caldera fill sequences with m 15% 
porosity at Valles caldera it is around 2200 kg m-a; 
for the Guayabo caldera, Costa Rica, it is between 900 
and 2400 kg m -3 [Hallinan and Brown, 1995]. From 
gravity modeling of the Los Azufres caldera, Mexico, 
Campo-Enriquez and Gatdub o-Monroy [1995] suggested 
a depth-averaged density contrast of-300 kg m -3 be- 
tween the caldera infill and embedding rocks. 

2.2. Fractured Rocks 

Ring faults and fractures are locally filled with quartz 
rich rocks that, as suggested in Figure 2b [Clauser and 
Huenges, 1995], are probably more conductive than the 
other rocks. This is supported by recent heat flow stud- 
ies [Guillou-Frottier et al., 1996] that suggest high k 
values for quartzites (around 5-6 W m -1 K -1, i.e., 2 
times higher than for the crustal background and 4 
times higher than for the intracaldera ash flow units. 
It is obvious that such a large lateral conductivity con- 
trast between the caldera fill sequences and the caldera 
borders can modify steady state heat transfer patterns. 
Thus, if the width of the border faults essentially in- 

creases with depth as suggested by Rytuba [1994], we 
could expect the high-conductivity ring faults border- 
ing the intracaldera ash flow tuffs to have a significant 
thermal effect, "channelizing" part of the lateral heat 
flow. It must be noted, however, that quartz-rich rocks 
become less conductive with increasing temperature, 
whereas the ash flow units are assumed to become less 

porous (and less insulating) with increasing depth. The 
combination of these two effects should result in depth- 
dependent conductivity contrasts between the ash flow 
tuffs and caldera faults. The effects of high- and low- 
conductivity rocks embedded within rocks of "normal" 
conductivity have still to be investigated. In the present 
study we merely take a first step forward by considering 
a simplified heat transfer model as presented in section 
3.2. 

3. Caldera "Snapping" and Heat 
Refraction' Analytical Assessment 

In this section we make several simplified analytical 
estimations for the conditions of caldera subsidence and 

the thermal effects of the laterally varying thermal prop- 
erties. In the later sections, based on the results of these 
estimations, we develop pure numerical models, free of 
the restricting assumptions imposed by the analytical 
approach. 

3.1. Static Conditions of Caldera Snapping 

Investigation of the thermomechanical behavior of 
ash flow calderas requires some simple initial idea of 
the conditions of their formation, such as location of the 
caldera with respect to the magma chamber, size and 
depth of the chamber, thickness of the deposits (which 
plays a double role as a surface load and as a ther- 
mal insulator), and critical overpressure in the magma 
chamber. Without at least an approximate knowledge 
of these parameters we may have difficulties in setting 
up the thermal and mechanical problem for numerical 
modeling. 

A very simple mathematical formulation can be used 
to explain the formation and location of the ring faults. 
As was recently shown on the basis of analysis of bend- 
ing and segmentation of the oceanic lithosphere at the 
spreading centers [Buck, 1997], a localized faulting or 
snapping (prior to distributed "crunching") of a bent 
thin plastoelastic layer occurs when the maximum 
value of the local elastic bending moment exceeds the 
respective value of the plastic moment. Buck [1997] has 
shown that this condition is valid for layers thinner than 
10 km. For our case, this implies that bending of the 
chamber roof (thickness of 2-3 km) should mostly result 
in localized faulting (and not in crunching) at the places 
of highest flexure and justifies our analytical model of 
roof bending and snapping (Figure 3) described in Ap- 
pendix A. As predicted by our model, the maximum 
flexural stress rr inside the caldera roof is reached at 

the borders of its upper surface (x = 0); here it be- 
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' 2R 

Figure 3. Diagram of the caldera roof snapping scenario; d is the roof thickness, R is the caldera 
radius, h is the thickness of the deposits, P is the overpressure, and F is the cutting edge force 
applied at the caldera center (x - R) (see text for definitions). 

comes equal (see equation (A12)) to 3P(R/d) 2, where 
P is the normal load applied to the cover (equal to the 
sum of the chamber pressure, weight of the deposits, 
p.qh (Table 1) and the other possible border forces), R 
is the radius of caldera, and d is the thickness of the 
strong part of the cover. The roof can break only if er 
is greater than the local brittle rock strength err, which 
is as little as 10 or 20 MPa at the surface and 2-3 times 

higher at the brittle-ductile interface with the magma 
chamber. 

As follows from the relation for er and from equa- 
tion (A9) in Appendix A for the edge cutting force 
Fc = rrd2/6R, the larger the caldera, the smaller the 
force or load needed to break it at the borders. For 

example, assuming d = 2.5 km, a thickness of at least 
3 km of ash flow deposits will be needed to provoke 
border faulting and the collapse of a small caldera with 
R = d (2Rid = 2). A larger caldera with R: 10 
km (2l•/d: 8) will collapse under a much (16 times) 
lower load, corresponding to only a 20-m-thick surface 
deposit layer or to overpressures in the magma chamber 
of only few megapascals. The same argument is valid 
for the critical edge force, which is several times higher 
for a small caldera (2Rid -- 2) than for a large one 
(21•/d > 6). Thus only a 10 m thickness of surface de- 
posits, or .-•1 MPa of the subsurface overpressure, will 
be sufiScient to break the roof of a magma chamber with 
(2l•/d) = 10, as against values 25 times greater for a 
caldera with (2/•/d) = 2 and 100 times greater for a 
caldera with (2R/d): 1. 

In general, one needs a higher bending stress to break 
the magma chamber roof from below than from above 
because the brittle rock strength rrw increases with 
depth z (or pressure) by • 0.6 pg(z q- h) for compres- 
sion and ,,• 0.3 p#(z + h) for extension; a tr• of •10-20 

MPa for granite-like rocks at the upper surface of the 
chamber roof would be from 20-30 to 40-60 MPa at the 

interface with the magma chamber. Consequently, one 
can assume that the rupture is more likely to be initi- 
ated at the surface, either, and most probably, (1) at 
the initial stages of upward roof and local extension due 
to overpressure in the chamber before the eruption or 
(2) at the stage of downward roof flexure under the load 
of the erupted deposits and due to the underpressure in 
the partly emptied magma chamber. In the latter case, 
the rupture may start both at the top and at the bot- 
tom of the cover because even though the rock strength 
increases with depth, the extended lower part of the 
chamber roof may appear weaker than the compressed 
upper part due to the asymmetry in response to com- 
pression and extension. 

Unfortunately, the thin-plate approximation does not 
allow one to account for stress depth distributions asso- 
ciated with the real geometry and mechanical properties 
of the system. Moreover, the assumption of a rigid flexi- 
ble cover would not work for very shallow or very "hot" 
calderas where the cover may no longer be rigid. As 
will be shown in later two-dimensional (2-D) modeling 
sections, faults do indeed tend to initialize at the bor- 
ders but may propagate in directions opposite to what 
is expected in the elastic model. This is due mainly 
to the additional strain localizations around the curved 

corners of the magma chamber and to depth-dependent 
inelastic rheological properties. 

In cases where/• >/k (with/k •_ (4-5) d being the flex- 
ural wavelength [Timoshenko and Woinowsky-Krieger, 
1959]), the second derivative of the deflection, td •, will 
have more than one local extreme. Consequently, the 
roof of the magma chamber may also be broken in the 
intermediate zones between the center and the borders 
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Table 1. Definition of Variables 

Variable Values and Units Definition Comments 

a n.d. inner caldera radius 

am n.d. Fourier coefficient 
A Pa -'• s-X material constant 
b n.d. outer caldera radius 

bm n.d. Fourier coefficient 
cm n.d. Fourier coefficient 
d km caldera roof thickness 

D N m flexural rigidity 
E 8 x 10 xø N m -e Young's modulus 
fw n.d. fault width 

F N m- • force 

g 9.8 m s -e acceleration due to gravity 
h m, km thickness of deposits 
hr 10 km decay scale of heat production 
H km chamber thickness 

H* kJ tool -• activation enthalpy 
Hs 9.5 x 10-•ø W kg-• surface heat production rate 
Hc2Cc• -• 1.7 x 10 -•a K s -• radiogenic heat 
k W m -• K -• thermal conductivity 
ki n.d. thermal conductivity 
kf n.d. thermal conductivity 
kx n.d. thermal conductivity 
kc• 2.5 W m -• K -• thermal conductivity 
k•e 2.0 W m -• K -• thermal conductivity 
km 3.5 W m -x K -• thermal conductivity 
Ka m e s -• coefficient of diffusion 
L 250 km thermal thickness of the lithosphere 
m n.d. index of Fourier series 
M N flexural moment 

n 3 to 5 stress exponent 
p Pa, MPa pressure 
P Pa normal load 

qm n.d. wavenumber 
r,y km, m roof curvature 
rk 1.5 to 10 conductivity ratio 
R km, m caldera radius 
R* 8.314 J mol -• K -• gas constant 
t s time 

ta Ma thermal age 
T o C, K temperature 
T• m, km effective elastic thickness 
Tm 1330øC T at depth L 
w m, km roof deflection 
x n.d., m, or km horizontal distance 
y m, km depth 
z 0 to i (n.d.) depth 
am n.d. Fourier coefficient 
•m n.d. Fourier coefficient 
7m n.d. Fourier coefficient 
• n.d. strain 

i s -x average strain rate 

analytical thermal model 
analytical thermal model 
power law 
analytical thermal model 
analytical thermal model 
analytical thermal model 

per unit width 

ignimbrites 
upper crust 

power law 
upper crust 
lower crust 

ignimbrites 
fault 

host rocks 

upper crust 
lower crust 

mantle 

mass diffusivity 

per unit length 
power law 

or overpressure 

analytical thermal model 

rk = kf/ki 

power law 

less than geological age 
depending on usage 
instant integrated strength 

analytical models 
analytical mechanical model 
analytical thermal model 
analytical thermal model 
analytical thermal model 
analytical thermal model 

(see flexural equations (A1)-(A2)). Such configurations 
could give rise to the formation of the so-called nested 
calderas, even though this scenario is not necessarily 
unique. 

The derivations of this section were made in the tra- 

ditional way, i.e., without taking into account the thick- 
ness H of the magma chamber itself. For d << H and 
d < (4-5) R (typical thin-plate constraints), the thin- 

plate approximation should be still valid for the cham- 
ber cover. However, if the thickness of the chamber 
approaches the thickness of its cover, the flexural be- 
havior of the latter will be much more complex since it 
may become coupled with the deformation of the whole 
magmatic system. Such coupling may increase the in- 
tegrated strength of the "roof-magma chamber" system 
and result in larger deformation wavelengths. Another 
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Table 1. (continued) 

Variable Values and Units Definition Comments 

m 2 s-1 thermal diffusivity n - k/p Cp 
8.3 X 10 -7 m 2 S --1 thermal diffusivity upper crust 
6.7 X 10 -7 m 2 s -1 thermal diffusivity lower crust 
8.75 X 10 --7 m 2 s -1 thermal diffusivity mantle 
Pa s effective viscosity 1019 to 1027 Pa s 
0.25 Poisson's ratio 

2650 kg m -3 density upper crust 
2900 kg m -3 density lower crust 
J m -3 K -1 density x specific heat 
Pa, MPa stress components 

Here n.d. stands for dimensionless units 

shortcoming of the simplified model is related to its in- 
ability to reproduce fault geometries and to account for 
interactions between the thermal and mechanical be- 
haviors. 

3.2. Steady State Heat Refraction 

3.2.1. Analytical model. Previous studies have 
considered the effects of heat reflection and refraction 

for particular cases [Lee and Henyey, 1974; Stephenson 
et al., 1989; Lobkovsky and Ketchman, 1992], but little 
has been done in relation to heat refraction at depth, 
which is quite different from that at the surface. In 
this study, we focused on temperature distribution and 
horizontal and vertical temperature gradients and heat 
fluxes. In order to obtain easily interpretable results we 
chose a simplified geometry that includes a rectangular 
caldera surrounded by thin vertical border faults and 

placed in a semi-infinite crustal layer (Figure 4). This 
model is based on the solution of thermal diffusion equa- 
tions (see Appendix B) and has four major variable pa- 
rameters: two geometric parameters (caldera and fault 
widths normalized to the vertical size of the system) and 
two thermal parameters (conductivity of intracaldera 
units, or ignimbrites, and conductivity of fault infill, 
normalized to that of the crust). One could also use 
a cylindrical or elliptical shape [Lee and Henyey, 1974] 
for the system geometry, but it has been already shown 
that the Cartesian model provides a lower limit on the 
heat transfer anomalies because it tends to give sys- 
tematically smoother anomalies than the cylindrical or 
elliptical model [see Guillou-Frottier et al., 1996, Figure 
4]. In sections 3.2.2-3.2.3 we concentrate on the effects 
of varying thermal conductivities and fault widths on 
the deep heat transfer. 

ash flow calderas and border faults 

i!•:.-!'.'c•...•i• • .......... i.•:•,:•::'::: ......... • 

. :•'•:";'•"] •, :• .:•:: .•. :....• 
Constant temperature = 0 at the surface ..... 

X•a x=b 

Figure 4. Diagram of the thermal model used to investigate the heat refraction effects within 
caldera settings. Ignimbrites (insulating ash flow units) fill the internal part of the caldera, and 
conductive quartz-rich rocks are present in the border faults. Boundary conditions are detailed 
in the text and in Appendix B. Caldera diameter is assumed to be large enough to maintain 
a constant undisturbed surface heat flow at the center x = 0. This simple geometry has been 
chosen to evaluate the depth dependence of heat transfer mechanisms. 
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Previous studies devoted to heat refraction at the 

surface (z = 0) have shown that thermal gradients 
measured over conductors with small aspect ratios do 
not exhibit important variations, whereas the surface 
heat flow may vary significantly [Guillou-Frottier et al., 
1996]. This phenomenon can be easily explained as 
a result of the constant temperature condition at the 
surface, enforcing smooth variations of the tempera- 
ture gradients below the surface. The analytical so- 
lutions given in Appendix B allow us to investigate the 
deep steady state heat transfer mechanisms; however, it 
should be noted that one physically valid condition for 
large calderas (an undisturbed and constant heat flow 
value at the center of the caldera) has been chosen for 
this simplified model. Tests of other conditions at the 
center of the caldera did not result in the same ther- 

mal field, but they were also less representative of an 
"insulating embedded caldera." 

3.2.2. A deep-seated thermal anomaly. Fig- 
ures 5, 6, and 7 show how lateral thermal conductivity 
variations disturb the isotherms and heat transfer at 

depth. Even though this model is simplified (mainly 
Cartesian geometry, steady state regime, "dry" condi- 
tions, large caldera hypothesis), it appears to be largely 
sufficient to demonstrate a number of quite unexpected 
thermal effects. 

Figure 5 is divided into two parts, the center of the 
caldera being located at x = 4 and the border faults at 
x = 1 (Figure 5, left) and x = 7 (Figure 5, right). The 
dimensionless thermal conductivity of the ignimbrites is 
the same in both cases (ki = 0.3). In the case in Figure 
5(left), the fault is represented by a vertical interface of 
zero width (fw = 0) and the ignimbrites contact directly 
with the host rocks. For the case in Figure 5(right), the 
fault is wide (fw = 0.1) with a conductivity ratio of 
rk = 7 (kf = 2.1). Surface anomalies of the vertical 
temperature gradients (G0) and heat fluxes (F0) are 
also shown at the bottom of Figure 5. Temperature 
(T) and vertical gradient (G) are continuous through 
any horizontal plane, whereas the vertical heat flow (F) 
has discontinuities on the sides of the vertical interfaces. 

In Figure 5(left) (fw = 0), low heat flow values are 
obtained near the inner side (to the right) of the dis- 
continuity because the temperature gradient decreases 
from the center (x - 4 in Figure 5) to the edge (x = 1) 
of the insulating part of the model. On the outer side of 
the discontinuity, the better conducting rocks promote 
a higher heat flow. The vertical heat flow anomaly is 
located in the vicinity of the discontinuity, and the heat 
flow almost recovers its undisturbed state, in the host 
rocks in Figure 5 (left). 

In Figure 5(right) (fw = 0.1, same ki of 0.3, and 
rk = 7), the bottom plot shows that the surface ver- 
tical heat flow jumps over the fault, while the surface 
temperature gradient stays the same as for the previous 
case (see complementary plot in Figure 5(left)). In this 
case, the vertical variation of the temperature gradient 
G within and around the fault at depth is quite irreg- 

ular; one can see a distortion of the iso-G lines (star), 
showing that the excessive heat is more easily trans- 
ferred from the ignimbrites to the host rocks when a 
contrasting conductive inclusion (fault) is present. This 
is also outlined by the higher values of the horizontal 
heat flow (f) near the bottom part of the fault. 

a.=.a. Fault widths and conductivity ratios. 
The effect of the lateral heat transfer near the bottom 

of the fault is shown at a larger scale in Figure 6, where 
the fault width has been varied from 0 to 0.06, for a 
constant value of ki (= 0.4). Because the temperature 
is fixed at the upper surface, there is no strong dis- 
tortion of temperature gradient near the upper surface. 
At depth, however, the presence of the conductive fault 
(kf = 2.0) increases the temperature gradients around 
and within it. In the case of a "thick" fault (Figure 6 
(bottom)), one notes at the outer edge (right side) at 
depth, an increase followed by a decrease in the vertical 
temperature gradient G. This phenomenon is due to 
the adjustment of the thermal field to the changes in 
fault width and conductivity values. For a thin fault 
this local maximum of temperature gradient would be 
observed only for rather large conductivity contrasts, 
exceeding any reasonable values. When a distorted iso- 
G line crosses the fault, a vertical heat flow anomaly 
appears at its outer side. As can be observed from Fig- 
ure 6, the wider the fault, the stronger the anomaly. 
However, the relative effects of variations in ru, ki, and 
k! are not so obvious and thus have to be investigated. 

With large calderas, as has been shown, the thermal 
field is disturbed over distances that are much shorter 

than the width of the caldera. Consequently, the high 
conductive fault can be considered as a finite width ver- 

tical layer sandwiched between two different media com- 
posed of low conductive ignimbrites (inner or caldera 
side) and the host rocks (outer side). The medium with 
a smaller conductivity difference (the host rock, by def- 
inition, ki < k l < k j) will disturb the thermal field 
in the vicinity of the fault to a less extent than the 
medium with the higher conductivity contrast (intra- 
caldera units). Consequently, since in nature the con- 
ductivity ratio r• can be hardly higher than 10, and 
k•/k• is < 2, one can expect that the effect of wristion 
in r• is controlled primarily by the ignimbrite conduc- 
tivity ki and not very much by the values of kj. 

Figure 7 shows the results of several tests where G is 
plotted versus horizontal distance for fixed depths. In 
Figure 7(top), r• is increased by changing both ki and 
kf. The thermal anomaly is observed at the outer side 
of the fault when G values are greater, for example, at 
depth z = 0.95 than at depth z = 0.99; we have ob- 
tained similar signatures for a fixed value of rk = 3 and 
variable ki and kf. Figure 7(middle) shows three cases 
where ki is fixed at 0.4, while r• increases from 3 to 6. 
The experiments in Figure 7(top) and Figure 7(middle) 
show that that a significant thermal anomaly is present 
(marked by star) when the ignimbrites are sufficiently 
insulating, regardless of the value of kf. Figure 7(bot- 
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Figure 5. Thermal field within and around the caldera for two cases. On the left, results for a 
fault of no width; on the right, results for a fault with width fw - 0.1 to emphasize the thermal 
anomaly (star). However, the conductivity ratio rk - 7 (k! - 2.1 and ki -0.3) stays within the 
reasonable range of values. Temperatures T and the other values are dimensionless (see text), 
while the undisturbed heat flow value equals 1. (top) Isotherms uplifted by the insulating effect 
of the ignimbrites. Horizontal heat flow f is continuous through the vertical discontinuities, 
contrarily to the horizontal temperature gradient g. For no width, the vertical temperature 
gradient G near the fault shows a smooth variation with increasing depth, in contrast to the case 
on the right. Sharp vertical heat flow variations (F) are observed close to the discontinuity. For 
large width, variations of G and F with depth show that the fault width accounts for the lateral 

and F0, with no surprising effect (heat flow shows a peak over the conducting fault). Indeed, the 
fixed temperature condition at the surhce implies that the anomaly must be deep seated. 
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Figure 6. Details of the vertical temperature õradient 
G and heat flow F near the conductive fault, for three 
fault widths (fw = 0, 0.02, and 0.06). The positive 
anomaly (star) appears on the outer side of the fault 
(within the embedding rocks) and for the largest fault 
widths. Lateral heat transfers are discussed in the text. 

tom) demonstrates the effect of different fault widths 
at fixed conductivity values, and the geometric effect 
is clearly seen in the development of the anomaly. For 
a wide conductive fault, temperature gradients remain 
rather high at the outer side of the fault (see also Figure 
6), leading to a more disturbed thermal field outside of 
the caldera. 

Obviously, the obtained results depend on the chosen 
boundary conditions that are detailed in Appendix B. 
Among these, the finite width of the caldera, leading to 
no lateral heat conduction at the center, allows the ther- 

mal anomaly to develop. Tests where a conductive fault 
was embedded within two semi-infinite insulating media 
(and hence with no symmetry in the solution) did not 
yield thermal anomalies at the outer sides of the fault. 
Heat excess from both sides of the fault was transmitted 

inside the fault. However, this problem does not corre- 
spond to our study where unusual rocks are represented 
by intracaldera units and not by the fault. 

4. Coupled Thermomechanical 
Numerical Model 

4.1. Numerical Approach 

To investigate the coupled thermomechanical evolu- 
tion of the calderas, we adopted a numerical approach 
that allows for brittle and nonlinear viscous (i.e., duc- 
tile) rheology and complex geometrical structures. This 
approach is based on the PARAVOZ code, the ker- 
nel of which was derived by A.N.B. Poliakov and Y. 
Podladchikov [Poliakov et al., 1993a, b] from the Fast 
Lagrangian Analysis of Continua algorithm (FLAC©) 
originally developed by P. Cundall [Cundall and Board, 
1988; Cundall, 1989] . Like FLAC(!• ), PARAVOZ is 
a large strain and fully explicit time-marching numer- 
ical algorithm based on the Lagrangian moving mesh 
method. The latter allows for large-strain solution of 
Newton's full dynamic equation of motion holding a lo- 
cally symmetric small-strain formulation generally used 
in continuum mechanics: 

(1) 

where •vi/Ot is acceleration, !/is the acceleration due to 
gravity, and p is the density. In its generic form, New- 
ton's equation of motion inherently implies the other 
Newton laws and the conservation laws (momentum 
and energy). Equation (1) is derived from this equa- 
tion of motion, under the assumption of continuum fi- 
nite deformation of an incompressible body based on 
local observance of the linear momentum principle and 
using the divergence theorem of multivariable calculus. 
Hence equation (1) corresponds to small-strain formula- 
tion but can be used for globally large-strain problems 
if solved in local coordinates by updating these coor- 
dinates at each time step in large-strain mode. In the 
Lagrangian method the incremental displacements are 
added to the coordinates, allowing the mesh to move 
and deform with the material. Unlike common implicit 
finite element methods (FEM), FLAC © methods do 
not need to form a global stiffness matrix, which makes 
the coordinate updates very simple: at each time step 
the new positions of the mesh grid nodes are calculated 
from the current velocity field using an explicit proce- 
dure (two-stage Runge-Kutta). For example, the local 
area rotation at large strain is taken into account by ad- 
justing the local stress tensor components o'ij 
coiko'kj - O'ik COkj), where finite rotation co is computed as 

1 

coij - • (•vi//•xj - •Vj//•Zi) [Cundall, 1989]. This pa- 
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Figure 7. Depth variation of horizontal cross sections (fixed values for z) of the temperature 
gradient in and around the fault; rk is varied together with ki and k! (top); rk is varied while 
ki = 0.4 is fixed (middle); and (bottom) fault width fw is varied for fixed values of r• and ki. 
The presence and the size of the star indicate the relative importance of the thermal anomaly. 

n•r cl•nlq with lc•cnlly plnln-qtrnin cc•ntinl•]rn rn•chnnlr-q 
problems and thus the assumption of locally symmetric 
strain/stress tensor in equation (1) holds. 

Even for static problems, the use of dynamic equa- 
tions of motion is an important advantage because it en- 

...... ,ha, ,h ....... io•l •h• is stable even when ,h• 

modeled physical system is unstable, as is quite often 
the case with nonlinear materials such as crustal rocks 

and magma. The solutions to the equations of motion 
provide velocities at mesh points, which are used to cal- 
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culate element strains 5ij. These strains are then used 
in constitutive relations to calculate element stresses 

crij and equivalent forces (pOvi/Ot), which form the ba- 
sic input for the next calculation cycle. For elastic and 
brittle [Byerice, 1978] materials the constitutive rela- 
tions have the form 

= + Co (2) 

with C, Co being material parameters. For ductile rhe- 
ology the constitutive relations become 

= (3) 

1 1/2 where sij is the strain rate, and cr- (•criicrij) is the 
ef[ective stress (second invariant of the deviatoric stress 
tensor). The parameters n (the effective stress or power 
law exponent) and B (constitutive parameter) describe 
the properties of a specific material. For the disloca- 
tion creep, B - Ae (-H'/R'T) The exponent n usually 
equals 3 to 5 and A (material constant) is depth- and 
temperature-dependent (Table 1 and Table 2); see also 
[Kohlstcd ½t al., 1995]. For brittle and elastic materi- 
als, C is usually only depth-dependent (though it may 
depend on strain and stress for some brittle materials). 
The plastic rheology used here is a cohesion-softening 
Mohr-Coulomb plasticity with friction angle 300 and 
cohesion decreasing from 20 MPa at zero strain to 0 
at 0.01 strain. These parameters are supposed to re- 
produce the Brittle properties of the subsurface rocks 
[G½rbault ½t al., 1998]. The values for the other mate- 
rial parameters are given in Tables 1 and 2. 

The FLAC(•-like algorithm used in PARAVOZ com- 
bines the advantages of the classical finite difference 
method (explicit time-marching solution of the alge- 
braic equations making it possible to deal with ill- 

behaved systems) with some advantageous features of 
the FEMs such as implicit matrix-oriented solution 
schemes and the possibility of using custom-shaped ele- 

ments. To allow for the •)plicit solution of the govern- ing equations, the FLAC method employs a dynamic 
relaxation technique based on introducing artificial iner- 
tial masses in the dynamic system. Physical instabilities 
are thus treated in a natural way, i.e., through dissipa- 
tion of the strain energy by converting it into kinetic 
energy. The adaptive remeshing technique [Poliakov et 
al., 1993a, b] enables one to resolve strain localizations 
leading to formation of the faults. Since some of the rhe- 
ological parameters are temperature-dependent, equa- 
tions (1) to (3) are coupled with the thermal transport 
equation: 

pCpOT/Ot - div(k.V T) + (v.V) T = Hs, (4) 

where v is the velocity tensor, Cp is the specific heat, 
k is the thermal conductivity tensor, H• is radiogenic 
heat production per unit volume (here we use the values 
adopted by Burov et al. [1993]; see Table 2). Techni- 
cally, the temperature increment due to the diffusive 
and heat generation terms is calculated on each time 
step, whereas that due to the heat advection term is 
accounted for automatically by deforming the temper- 
ature field together with the displacement field. This 
splitting is possible because a very short automatically 
adoptive time step is used, chosen to satisfy the "frozen 
field" condition [Marti and Cundall, 1982]. This means 
that the time step is computed to be so short that in- 
formation (stress, heat, etc.) cannot significantly prop- 

agate between the neighboring)elements during a single step. The solver of the FLAC method does not imply 
any inherent rheology assumptions, unlike most com- 
mon finite element techniques based on the displace- 

Table 2. Parameters of Dislocation Creep for Lithospheric Rocks and Minerals 

Mineral/Rock A, H*, 
Pa -'• s- 1 kJ mol- 1 

Quartzite (dry) 5 X 10 -12 
Diorite (dry) 5.01 x 10 -ls 
Diabase (dry) 6.31 X 10 -20 

190 3 

212 2.4 

276 3.O5 

Olivine/dunite (dry) 
dislocation climb 

at rrl -rra < 200 MPa 

7x 10 -14 520 3 

Olivine 

Dorn's dislocation glide 
at o'1 --iT3 > 200 MPa 

R* T • 

where do =5.7 x 10 TM S -1 
•ro =8.5 x 103 MPa and H* =535 kJ mo1-1 

These values correspond to the lower bounds on the rock strengths [Brace and Kohlstedt, 1980; 
Carter and Tsenn, 1987; Tsenn and Carter, 1987; Kirby and Kronenberg, 1987]. 
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ment method and requiring formulation of new finite 
element types for each new rheology. Owing to this 
FLAC © feature, arbitrary nonlinear constitutive laws 
can be easily plugged into the numerical scheme with- 
out any additional subiterations and be treated in a 
valid physical way. The other advantage of the FLAC(• 
method over most common techniques is that no large 
stiffness matrix assemblages are to be inverted during 
the computations. This allows for much better numeri- 
cal resolution and larger displacements than can be usu- 
ally afforded using a traditional FEM code. Thus, in our 
problem, one can simulate the formation of nonprede- 
fined faults using a uniform high-resolution grid. This 
is different from most other techniques, which would re- 
quire either specially predefined elements (e.g., slippery 
nodes) or local mesh prerefinements, both unacceptable 
in our case. 

4.2. Mechanical Model Setup 

We use a full 2-D Cartesian model with no axial sym- 
metry, which is needed to reproduce asymmetric fea- 
tures in caldera and border fault geometry. In this study 
we chose a classical scenario with a central evacuation 

vent. Our thermomechanical model comprises a 50 km 
x 20 km box with crustal rheology, which embeds a rect- 
angular magma chamber of thickness H (5 to l0 km). 
The top of the chamber is placed at a depth d (2 to 5 
kin) below the surface (Figure'8). The diameter of the 
chamber is equal to 2_R and has been varied between 
d and 25d. The numerical grid consists of 16,000 to 
256,000 quadrilateral elements of size 250 m x250 m to 
72.5 m x72.5 m. 

To prevent mesh-locking at large strains, each ele- 
ment is composed of two overlaid couples of constant- 
strain triangular subelements. The embedding rock 
is presented by two rheological layers: a 10-km-thick 
elastic-plastic (Mohr-Coulomb)-ductile upper crust layer 
with friction angle 300 , and a 10-km-thick elastic-plastic- 

ductile lower crust layer with similar rheology but with 
higher density (Table 2). The effective (nonlinear) vis- 
cosity •Uefr - rr(2• (rr, P, T)) -1 of the layers is deter- 
mined by the ductile creep law (Table l) and is strongly 
temperature-(T), pressure-depth-(P), and strain rate 
(•)-dependent. For the representative rheological pa- 
rameters (Table l) the viscosity changes by a factor of 
4-10 above and below the depth corresponding to the 
mean value of 102ø Pas. The elastic parameters are 
identical for both layers (Young's modulus E- 0.8 GPa 
and Poisson ratio •2 - 0.25). The magma chamber is 
filled with hot (and thus low viscosity) quartz-controlled 
(silicic) magma. Theoretically, at 800øC, the magma 
viscosity may be as low as 106-107 Pas [Clemens, 1998; 
C.Jaupart, personal communication, 1998]. The char- 
acteristic times in the model are determined by the kine- 
matic boundary conditions and by viscous response of 
the embedding crust. However, the characteristic times 
in the model are thus determined by the velocity bound- 
ary conditions and by the viscous response of the em- 
bedding crust. Associated deformation rates are of the 
order of l0 -13 s -1, which yields negligibly low magma 
stresses of 10 -8 Pa. For this reason, there is no need to 
represent the entire viscosity range in the model, and 
any significant viscosity contrast (2-5 orders) between 
the magma chamber and the embedding rock would be 
sufficient to calculate deformation of the magma cham- 
ber [Chdry et al., 1991]. We chose a value of l016 Pa 
s which is 3 to 5 orders lower than the viscosity of the 
upper and lower crust (1019 to l021 Pas). 

Largely to save CPU time, the magma convection 
was not modeled. To simulate thermal and mechani- 

cal conditions of the upper boundary layer present in 
the convecting magma chamber, the upper quarter of 
the magma chamber was not filled with hot magma but 
was "substituted" by constant overpressure of l0 MPa 
(most commonly inferred value [e.g., C'hdry et al., 1991]) 
where heat diffusion only occurs. Short timescale pres- 

ignimbrite deposits 

Figure 8. Setup for the mechanical numerical model. Properties of the materials are given in 
Tables 1 and 2. 
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sure variations, induced for example by magma-water 
interactions [Dobran and Papale, 1993], are not con- 
sidered in our model. Because the upper part of the 
partly emptied reservoir is void of magma, this layer 
acts as a thermal insulator (thermal conductivity of the 
"empty" elements is replaced by that of the air). Direct 
heat radiation through a transparent gas layer and gas 
convection are not considered. 

4.3. Boundary and Initial Conditions 

The bottom condition is a pliable Winkler basement, 
which simulates the response of the underlying weak 
lower crust (for the geotherm and depth interval used, 
the viscosity of the lower crust is •10 •9 Pa s). The 
lateral boundary conditions are given in velocities. In 
the calculations, the amount of material that leaves 
through the evacuation vent is redistributed around on 
the surface. We used a diffusion mass transfer law on 

the surface to redistribute extruded and eroded mat- 

ter [Avouac and Burov, 1996]. This law has a form 
Oh/Ot = Ii'• /X h, where Ii'• is a scale-dependent diffu- 
sion/erosion coefficient and h is the surface elevation. 
Kd was adjusted empirically to achieve timely redistri- 
bution of the extruded material. The choice of this, 
or any other, law is not principally important, but it 
is known that diffusion allows for more realistic deposit 
layering than, for example, fiat deposition and automat- 
ically insures mass conservation for the extruded mate- 
rial. The volume of the extruded material is calculated 

from the imposed conditions on the overpressure in the 
magma chamber. For simplicity, the overpressure was 
kept constant in these experiments. 

4.4. Numerical Experiments 

The thickness d of the ignimbrite calderas does not 
significantly change from one caldera to another (d = 
2-5 km). This allows us to fix d at a representative 
value of 2.5 km and to vary/• and H only. We imple- 
mented two groups of experiments: one with a station- 
ary frozen-in temperature field, and the other with full 
time-dependent heat conduction and advection. The 
first group applies to the caldera collapse that occurs 
rapidly, and the initial thermal field has no time to dif- 
fuse. The second group considers both the collapse and 
the long-term postcollapse evolution, for which an ac- 
count of the thermal transport is indispensable. 

The experiments with a frozen-in temperature field 
were subdivided into two subgroups. In the first, we 
assumed far-field boundary velocities equal to zero (no 
regional compression or extension); in the second, we 
investigated the influence of background tectonic ex- 
tension. During these experiments we assumed a typi- 
cal steady state crustal geotherm corresponding to the 
parameters from Table 1. 

The numerical experiments were started from 
problem-specific tests of the code, including compar- 
isons with analytical predictions and convergence or res- 

olution tests by decreasing the grid size by factor of 2, 4, 
and 8. The choice of the time step is ensured automat- 
ically using stability and convergence criteria derived 
by Marti and Cundall [1982], who have shown that the 
time step should be smaller than the time of propa- 
gation of elastic compressional wave through smallest 
grid element, Maxwell relaxation, and heat propaga- 
tion time. To save computing time, we chose a reso- 
lution sufficient to resolve major border faults but not 
the smaller ones (second order, etc). Further grid refine- 
ment does not result in qualitative changes in the behav- 
ior of the faulted system; it only affects the width of the 
shear bands and the distribution of the secondary and 
smaller order faults, yielding infinitely refining fractal 
distributions with increasing resolution [Poliakov et al., 
1994]. In all tests with decreased grid size we observed 
that stress concentration zones obtained in a "low"- 

resolution mode coincide with fault localization zones 

obtained at higher resolution. Consequently, higher res- 
olution basically allows one to obtain a more accurate 
fault geometry of the primary fault locations already 
well resolved by the lower-resolution models. 

4.4.1. Caldera collapse in the absence of the 
regional stress field, frozen-in temperature field. 
Here we investigated the relationships between three 
major geometric parameters of the caldera: horizon- 
tal size (2/•), depth to the magma chamber (d), and 
thickness of the overpressured magma chamber (H). 
We studied six general cases shown in Figures 9 and 
10: (1) 2t•/H = 1 ("S, small caldera"), 2t•/d = 2, 
(2) 2t•/H = 2 ("M, medium caldera"), 2t•/d = 4, (3) 
2R/H = 2.4 ("ML, medium-to-large caldera"), 2Rid = 
4.8, (4) 2t•/H = 3 ("L, large caldera"), 2t•/d = 6, 
(5) 2t•/H = 5 ("XL, very large caldera"), 2Rid = 10, 
and (6) 2t•/H = 15 ("XXL, extremely large caldera"), 

= 30. 
At the first stages of the large caldera case (Fig- 

ures 9a and 9b, bottom) some surface uplift occurs 
due to an overpressured chamber. In this case, up- 
ward caldera roof bending precedes the collapse and the 
flexural stress concentrates at the upper corners of the 
chamber, resulting in the formation of inverse inclined 
border faults propagating from the top to the bottom of 
the chamber roof. The inclination of the faults is con- 

trolled by the friction angle, which determines principal 
failure direction in the frictional material. 

Extruded by overpressure, the magma leaves the 
chamber and undergoes various physical and chemi- 
cal modifications that, in our model, are simulated by 
change of the thermal conductivity, density, and me- 
chanical strength of the magma to those of the resid- 
ual ignimbrites accumulating as a surface load on the 
cover of the magma chamber. When this load can no 
longer be supported by the chamber pressure and roof 
strength, the chamber cover starts to flex down and sub- 
side (Figures 9a and 9b, middle). Roof bending results 
in the failure at the borders (in perfect agreement with 
our analytical estimations) and in the initiation of nor- 
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Figure 9a. Consequent phases of the caldera collapse and development of the border faults 
with regional tectonic stress for deviatoric shear stress distribution (second invariant of the stress 
tensor). 

mal inclined border faults cutting through the cover, or 
in the reactivation of the faults formed during the up- 
ward flexure of the cover preceding the collapse. The 
roof slides down on the inclined faults, but this displace- 
ment is limited by the inward dipping geometry of the 
cover (Figures 9 and 10). This sliding is also prevented 
by eventual fault locking due to friction, which contin- 
uously increases with accumulation of the surface load. 
When sliding on the inclined faults stops but the normal 
load continues to grow, the roof snaps once again, but 
now in a more favorable vertical direction. New subver- 

tical border faults form, allowing for "easy" piston-like 
subsidence. Such subsidence is no longer resisted by 
friction or flexural strength of the cover, and can re- 
sult in an accelerated loss of the material though the 
central vent which may continue as long as there is a 
disbalance between the chamber pressure and load on 

the cover and, naturally, as long as there is free space 
left. 

The experiment in Figure 9 (L caldera) demonstrates 
that the inclined border faults can be formed during the 
uplift phase and finally shaped during the subsidence 
phase. The inclined faults are followed by subvertical 
faults that mostly start at depth and propagate up- 
ward. The inclined normal faults may be initialized (1) 
at the surface during the subsidence phase and propa- 
gate down to the corners of the chamber or (2) at depth 
during the possible uplift phase (in this case they first 
appear as inverse faults) and propagate upward to the 
surface. This particular behavior is different from what 
is expected on the basis of simple analytical elastic es- 
timations, which suggest that the faults preferentially 
start at the surface in the uplift phase and at the depth 
in the subsidence phase. 
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Figure 9b. Accumulated plastic strain. Constant geometric parameters are cover thickness 
d - 2.5 km, and chamber thickness H - 5 km. Insert on the left shows directions of the potential 
brittle failure around the magma chamber. Note concentrations of the actual and potential cracks 
at the outer side of the border. Note deviatoric stress concentrations (around 10 MPa) at the 
sides of the faults, resulting in nonlithostatic pressure anomalies of the same order, pressure 
gradients of about _> 10 Pa m-•. 

In the case of small 2Rid ratios (Figures 10a and 
10b, top) the border faults cannot form since the flex- 
ural stresses in the magma chamber roof cannot ex- 
ceed the brittle strength of the rocks. Starting from 
(2R/d) > 4, bending stress may come close to the crit- 
ical level. In this situation, a single fault on an oc- 
casionally weaker side may appear, forming conditions 
for so-called trapdoor subsidence (see Figure 10b where 
(2R/d): 4.8 and Figure lc). It is noteworthy that this 
collapse mechanism could not have been reproduced as- 
suming a commonly inferred axial symmetry. Starting 
from (2R/d) = 6, the cover continuously breaks at all 
sides of the caldera. Finally, when (2R/d) > 10, sec- 
ondary zones of roof failure may also appear at the em- 
placements where the second derivative of the flexural 

deflection, w", has two extreme values (or more depend- 
ing on the 2Rid ratio) within the interval 0 < x < R. 
In the experiments shown in Figures 9, 10a, and 10b, 
the chamber roof is not sufficiently thick in the verti- 
cal direction (d = 2.5 km, 10 elements x 0.25 km) to 
allow one to resolve the localization of the deformation 

associated with the secondary extremes of the bending 
stress. The results of computations made for a thicker 
magma chamber roof (d = 5 km, or 20 elements) are 
given in Figure 10c, which clearly shows the formation 
of a secondary fault system associated with the flexure 
between the borders and center of the caldera. 

4.4.2. Caldera collapse in the presence of •he 
regional stress field. In the second group of exper- 
iments (Figure 11) we assumed that the caldera under- 
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Figure 10a. Relationship between the geometric characteristics of the magma chamber and 
distribution of the border faults for deviatoric shear stress distribution. Effect of variation of 

the ratio of the caldera diameter to magma chamber thickness (2R//-0, or thickness of the cover 
(2•/•, given in parentheses). The inset in the large caldera case (2•/H - 3) is obtained at a 
high numerical resolution. Fault geometry is clearly delineated as well as velocity field. 
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Figure 10b. Same as Figure 10a, except for accumulated plastic strain. 

goes extension associated with regional tectonic defor- 
mation. This experiment is analogous to that of Figure 
9 (2Rid = 5) except that the lateral boundary condi- 
tions now correspond to an additional far-field exten- 

sion at a constant rate of 10 mm yr-:. As one can 
see, the presence of the far-field stress can significantly 
modify the distribution and geometry of faulting. The 
regional extensional stresses shift the locations of the 
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Figure 10½. Example demonstrating formation of the secondary faults at a better numerical 
resolution of the caldera roof, imposed by larger values of d and H, (d- 5 km and H- 7.5 km), 
with no regional tectonic stress. Velocity field is shown with arrows. 

zones of minimal and maximal bending stresses in the 
magma chamber roof, leading to the primary formation 
of multiple faults in the proximity of the center of the 
caldera floor. In addition, the regional extension pro- 

vokes a gradual uplift of the magma chamber and up- 
ward deformation of its bottom. This may result in a 
pressure rise in the magma chamber, additional magma 
extrusions, and uplift of the cover. We believe that 

Time - f m.y. .......... •::•:' ' ......... 
5.0e+02 '•.Se+ 07 5.0e+07 

Time - 0.4f3 m.y. -' 5.0e+02 2.5e+07 5.0c+07 

Figure 11. Development of a caldera in a regional tectonic extension field (10 mm yr-•; arrows 
correspond to the velocity field). Note the concentration of faults at the center of the caldera 
floor and the practical absence at the borders. Nonlithostatic pressure/stress reaches 5 MPa in 
this case. The timescale is imposed by velocity boundary conditions. 
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this scenario may partly explain the formation of deep- 
seated and intrusion-centered ore deposits. However, 
a detailed study of the influence of regional tectonic 
stresses on caldera evolution requires suffcient knowl- 
edge of the tectonic history of the adjacent regions. 

4.4.3. Non-steady state thermal field and me- 
chanical response of the caldera system. Ther- 
mal perturbation resulting from the caldera collapse 
may lead to the establishment of a new steady state 
thermal regime with a transient period that may last 
up to 0.5 m.y. and during which a series of thermally 
controlled mechanical processes may take place, signif- 
icantly changing the geometry and conditions in the 
brittle and ductile zones surrounding the magma cham- 
ber. Two thermal effects should have major influence 
on the evolution of the postcollapse system: (1) heat 
diffusion from the hot magma body and (2) a thermal 
blanketlug by the ignimbritic cover. The quartz-rich 
materials (silicic magma and the embedding crust) can 
easily flow by ductile creep mechanism at temperatures 
as low as 250-300øC. The transition from "cold" brittle 

behavior to "hot" ductile creep may limit the propaga- 
tion of the brittle faults and cracks and thus influence 

the geometry of zones of brittle failure. This especially 
concerns the cover of the magma chamber, of which the 
upper part is brittle but the lower part may be ductile. 

For these reasons, we implemented a third group of 
numerical experiments that incorporate full coupling of 
the heat transfer equations with mechanical equilibrium 
and constitutive equations. In the experiment presented 
in Plate 1 and Figure 12, the magma chamber has an 
initial temperature of 800øC. The low conductive ign- 
imbrite layer of the cover has a "representative" thick- 
ness of 1.25 km (see Table 2 for the thermal param- 
eters). The background geotherm in the surrounding 
crust corresponds to a continental geotherm with am- 
bient temperatures of about 50-70øC at the depth of 
2.5 km (chamber roof) and 150øC at 7.5 km (cham- 
ber bottom). These background values are well below 
the initiation level of thermally activated creep in the 
brittle-ductile crust, but the presence of the hot magma 
chamber locally increases the temperature of the em- 
bedding rock to 200-300øC at the depth of 2.5 km, and 
to 400øC at the depth of 7.5 km, which is sufficient 
to activate ductile deformation everywhere around the 
chamber. The magma chamber thus creates a ductile 
"aureole" around itself, delineated by a smoothed ovoid 
brittle-ductile boundary that can be considered as the 
"thermomechanical" geometry of the magma chamber 
(in contrast to more common chemical/lithological def- 
initions). The brittle deformation (cracks and faults) 
will follow this boundary without penetrating inside 
(except possibly for major faults). The reflection of the 
magma heat by the ignimbrite blanket on the surface 
results in overheating of the lower part of the magma 
chamber roof, which thus becomes even more ductile. 
This significantly reduces the effective mechanical thick- 
ness of the roof, as well as the depth and inclination of 

the border faults. In the particular case of Plate 1 and 
Figure 12, the presence of an •l-km-thick ignimbrite 
layer results in (1) uplift of the geotherm of the brittle- 
ductile transition (BDT) in the magma chamber roof 
from the initial depth of 2.5 km (roof/chamber inter- 
face) to a depth of 1.0-1.5 km (middle of the chamber 
roof), (2) reduction of the flexural strength of the roof, 
and (3) strong modification of the length and geometry 
of the border faults which descend "normally" to the 
depth of the B DT and then split into two directions: 
one (major) turning around the BDT zone delineating 
the magma chamber, the other (minor) following the 
B DT boundary within the magma chamber roof. In 
the case presented in Plate 1 and Figure 12, thermal ef- 
fects resulted in a horizontal delamination of the magma 
chamber cover into two subhorizontal layers divided by 
a zone of subhorizontal ruptures. The final geometry 
of the brittle zones resembles earthquake data from the 
Rabaul caldera in Papua New Guinea (Figure 12) [Jones 
and Stewart, 1997], which suggests almost exactly the 
same geometry. Although the ring fault geometry (in- 
ward or outward dipping faults) in the Phlegraean Field 
caldera has been shown to be strongly related to ver- 
tical ground motions [Troise et al., 1997], earthquake 
hypocenters are less focused on the discontinuities, pos- 
sibly due to the data or processing limitations, and com- 
parison with our results is more difficult. 

Rapid changes in the thermal regime associated with 
eruption and collapse result in thermoelastic stresses 
that may also effect the evolution of the border faults 
and central dome. However, this effect significantly de- 
pends on (1) the thermal history of the chamber set- 
tling and (2) the inferred rheological properties of the 
magma chamber roof as well as the thermal conditions 
at the chamber roof/magma body interface and the ini- 
tial temperature of the magma. The roof of the recur- 
rently replenished chambers should rapidly heat up, re- 
sulting in reduction of the caldera mechanical thickness 
and, consequently, in shallow faulting. 

The general aim of the thermally coupled experi- 
ments was to demonstrate the importance of the ther- 
mal effects rather than to suggest a particular scenario 
of the thermal evolution. Here the important result 
is that they show that the "mechanical" geometry of 
the magma chamber (BDT boundary) is significantly 
controlled by temperature, in addition to the gravity- 
driven deformation. Hot magma creates a large ductile 
zone in the surrounding crust, following the geometry of 
the blurred thermal diffusion aureole around the cham- 

ber. In our experiments the initially rectangular magma 
chamber adapted its geometry and took on a rather el- 
liptical shape. During these experiments we also tested 
quasi-Rayleigh-Taylor mechanisms of chamber emplace- 
ment in the brittle-ductile media. The initial hot cham- 

ber was placed in the lower crust (25 km depth) and 
was allowed to float up in the denser surrounds. As 
we could observe, even in the case of positive buoy- 
ancy, the chamber could be stopped and frozen in the 
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Plate 1. Interaction between the evolving thermal field and mechanical response of the caldera 
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Figure 12. Accumulated plastic strain for the case shown in Plate l. The insert shows the depth 
distribution of the earthquakes at Rabaul caldera [after Jones and Stewart, 1997]. Horizontal scale 
is slightly exaggerated to emphasize similarities in fault geometry and earthquake distribution. 
Rabaul caldera has planar ovoid shape of dimensions of about 5 x 8 kin. The timescale is 
essentially controlled by heat diffusion rates. 

brittle layer if it had insufficient thermal energy (vol- 
ume, temperature) to ductilize the brittle surrounds. 
In any case, the roof of the chamber cover was not able 
to rise above 2 krn depth: above this level it is dif- 
ficult to ductilize the overlying rocks because of their 
efficient cooling through the surface. Surprisingly, this 
depth limit coincides with the minimal depth of the 
silicic magma chambers [e.g., Cubellis et al., 1995; Hill 
et al., 1998]. Another result specifically related to the 
problem of magma chamber eraplacement was the for- 
mation of surface normal faults long before the actual 
arrival of the chamber at the surface. When the cham- 

ber was still at 10 km depth, the induced upward flow 
was able to create extensional stresses at the surface 

sufficient to promote faulting. The distance between 
these "prevolcanic" faults was controlled mainly by the 

effective thickness of the competent brittle layer and not 
by the magma chamber geometry, just until its arrival 
at the surface. This result requires further investiga- 
tion since it may help in understanding fundamental 
processes occurring in the upper crust during magma 
chamber eraplacement. 

In all experiments, stress-pressure variations (10 to 
50 MPa) were predicted in the vicinity of the border 
faults and of the upper part of the magma chamber, 
even during the quasi-steady stages of caldera evolu- 
tion. Thus even in the stationary regime, long after 
the collapse, the nonhydrostatic stress/pressures may 
be largely sufficient to drive fluid flow from the caldera 
to the outer side of the fault and overprint or disturb 
other circulation mechanisms (see Gaeta et al. [1998] 
for such fluid-dynamic effects in ash flow calderas). 
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Discussion and Conclusion 

5.1. Summary of the Results 

Our experiments have shown that the border faults 
of ash flow calderas can be created by two mechanisms: 
(1) localized stress concentrations at the borders of the 
caldera caused by flexure of the roof and (2) yielding of 
the preweakened borders under the normal load (pres- 
sure and deposits) applied to the cover. Formation of 
the continuous symmetric border faults (Figure la) con- 
nected to the magma chamber occurs at intermediate 
and large aspect ratios (2R/t 0 of 3 (2Rid = 6) and 
above. A single-side fault may appear at aspect ra- 
tios of m 2.5 (2Rid • 5), thus leading to the so-called 
trapdoor caldera collapse scenario (Figure lc). For the 
largest aspect ratios, 2Rid >_ 10, the formation of sec- 
ondary flexural faults also becomes possible. These cou- 
pled inclined faults could also be assimilated to funnel 
calderas, as outlined in Figure l e. 

With respect to previous and current elastic models 
our results demonstrate significant differences in pre- 
dicted fault geometry, direction of fault propagation 
and possible crack network geometries. The use of elas- 
tic models is thus limited to rough estimations of critical 
aspect ratios leading to faulting. 

The regional tectonic stress may change the style of 
the caldera evolution. An extensional far-field stress 

may be favorable for the occurrence of deep faulting 
concentrated around the center of the caldera. As long 
as the extension continues, the faults propagate from 
the center to the borders and create a wider dispersed 
fault zone. 

Our numerical experiments predict that two types of 
border fault can be formed: inclined and subvertical. 

This prediction is supported by recent field studies (T. 
Druitt, personal communication, 1998). The inclined 
border faults can be created as a result of roof bending 
during the uplift or following subsidence phase. The 
vertical border faults are associated with the piston-like 
vertical movement of the cover and can be formed at 

the beginning of roof subsidence or even earlier, during 
the uplift phase. The inclined faults join the vertical 
ones either at the corners of the magma chamber or 
somewhere in the middle between the surface and the 

chamber (Figures 9 and 10). 
The thermal anomaly induced by the thermal con- 

ductivity contrasts can cause an upward shift of the 
brittle-ductile transition in the magma chamber roof 
and around the chamber (Plate i and Figure 12). The 
density of the second-order crack-and-fracture network 
is maximum at the outer side of the vertical faults, di- 
rectly above the fault junction zone (Figure 9b). The 
concentrations of second-order cracks at some depth on 
the outer side of the ring faults, quite interestingly, co- 
incide with the locations of the heat flow anomalies pre- 
dicted by the analytical thermal model (Figures 5 to 7). 

The coupled thermomechanical model (Plate i and 
Figure 12) predicts the possibility of subhorizontal brit- 

tie failure zones delineating the brittle and ductile parts 
of the magma chamber cover. These could serve as con- 
duits for the hydrothermal fluids. This effect is caused 
by the poorly conductive intracaldera deposits (in addi- 
tion to the partly emptied reservoir) screening the heat 
coming from the magma body. Such thermal insulation 
modifies the characteristics of the faults, resulting in 
geometries quite different from those usually assumed. 

5.2. Implications for Economic Potential 
of Ash Flow Calderas 

The geothermal and mineral potential of ash flow 
calderas primarily depends on the flow paths of hot 
fluids supposedly leading to mineral deposition and to 
anomalously hot temperatures at shallow depths. The 
presence of a hot magma body under a porous and frac- 
tured medium (the ignimbrite cover) should promote a 
convective circulation locking the downwellings around 
the border faults. The hot magma body and the in- 
sulating cover should also enhance forced convection 
through the major permeable zones (central vent and 
ring faults), giving lateral temperature gradients that 
are favorable for increased fluid velocities in the high- 
permeability zones, as shown by the "thermal chan- 
nelization" process described by Bolton et al. [1996]. 
The insulating effect of the ash flow units would pro- 
mote mushroom-shaped isotherms, often suggested in 
the sketchy figures explaining anomalous temperatures 
within caldera settings [e.g., Lipman, 1992; Arribas et 
al., 1995; McConnel et al., 1997]. It must be noted that 
fluid paths and temperature history at shallow depths 
are also dependent on surface topography. 

In addition, downward bending of the caldera roof 
creates compressional deviatoric stresses in its upper 
part and extensional stresses in its lower part. These 
stresses may reach several megapascals, promoting im- 
portant stress/pressure gradients directed downward 
and outward from the caldera and possibly forcing fluid 
circulation in that direction. Finally, stresses associated 
with the border faults may create constantly or repet- 
itively active pressure differences of at least 5-10 MPa 
directed toward or away from the faults and thus pump- 
ing fluids and changing the porosity/permeability and 
crack density (e.g., Figures 10, 12 and Plate 1). The 
concept of fault forcing on the fluid flow and perme- 
ability of the surrounding rocks is widely accepted for 
active fault systems [e.g., Sibson, 1987] but is also ap- 
plicable to steadily deforming systems. This fluid flow 
can be focalized and driven by nonhydrostatic large- 
scale stress/pressure gradients associated with caldera 
subsidence, steady roof flexure, and the general evolu- 
tion of the caldera system. 

Some ore deposits, such as low-sulfidation epithermal 
ores, are commonly found near the outer sides of the 
border faults of ash flow calderas. Among the numer- 
ous examples of such a puzzling tendency are the high- 
sulfidation epithermal deposits of the Lomilla caldera, 
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nested within the Rodalquilar caldera, Spain [Arribas et 
al., 1995], and the low-sulfidation epithermal deposits 
of the Emperor Mine, Tavua caldera, Fiji Islands [Ah- 
mad and Walshe, 1990]. The mineralization is associ- 
ated with complex thermal fluid-dynamic effects [Hen- 
ley, 1985] and requires traps, such as small second-order 
cracks and fractures branching from the major fault sur- 
faces. Thus the minerals carried with the hydrother- 
mal flow can be easily trapped in the dense fracture 
network associated with the border faults (Figure 9b). 
This fault-associated network not only enhances "trap- 
ping" capabilities but also improves thermal exchange 
between the fluid and the host rocks. Moreover, the 
concentration of second-order cracks at the outer sides 

of the border faults, as well as the anomalous heat flow 
anomaly (Figures 6 and 7) might favor reheating of the 
deep fluids together with upwellings, and thus pressure 
drops along the outer side of the faults. 

Figure 11 shows that the depth and the location of 
the initiated faults can be modified by the regional 
stress regime. In the Philippines a strong extensional 
regional stress regime before the late Miocene led to 
the formation of porphyry-copper deposits (deep-seated 
mineralization clustered in a fractured network) in dis- 
tricts where epithermal gold (shallow-seated mineral- 
ized veins) appeared in abundance after this period, 
when extension was only weak [Mitchell and Balce, 
1990]. Some intrusion-centered ore deposits are at- 
tributed to a "telescoping" event, where erosion would 
be the driving mechanism for juxtaposing these two dif- 
ferent styles of ore deposit [Sillitoe, 1994]. According to 
our results, erosion could bring both types of mineral- 
ization to the surface if the regional tectonic regime is 
suflSciently modified (e.g., from high to weak extension) 
during the lifetime of the hydrothermal system related 
to the magmatic structure. 

5.3. Discussion 

In our thermomechanical model, where the intra- 
chamber pressure is kept constant, the outside pressure 
increases due to the growing normal load of the sur- 
face deposits. It is possible that roof collapse can also 
be caused by the suction effect due to possible pres- 
sure drop in the chamber after rapid degassing of the 
magma following the opening of the central vent (T. 
Druitt, personal communication, 1998). For this study 
the origin of the pressure difference does not change the 
mechanisms of the caldera collapse. 

We used a full 2-D Cartesian model with no axial 

symmetry. Although such a model may predict some- 
what exaggerated stresses with respect to 3-D models 
[e.g., van W½½s and Cloctingh, 1996], it has been shown 
from analytical studies [Timoshcnko and Woinowsky- 
Krieger, 1959] that for cylindrical bodies with a radius 
several times greater than height, this difference should 
be < 10-30%. This uncertainty is considerably smaller 
than possible differences between stresses computed us- 

ing realistic brittle rheology and those obtained from 
commonly used elastic stress predictions [Buck, 1997; 
Gcrbault et al., 1998]. Compared to widely used 2-D 
curvilinear axisymmetric models, our model can repro- 
duce differences between the geometries and fault dis- 
tributions and uplift/subsidence on the opposite sides 
of a caldera (e.g., trapdoor subsidence). In addition, 
many calderas are strongly elongate in the horizontal 
plane and are also intersected by linear tectonic fault 
or are found in uniaxial tectonic extension fields. This 

limits the application of axisymmetric models. 
One can question whether the sharp geometry of the 

magma chamber edges used in the experiments of Fig- 
ures 9 and 10 could significantly affect fault initiation. 
A smoother geometry could be easily incorporated, but 
existing geological or geophysical data do not really al- 
low for a better choice of the corner geometry. For 
example, the elliptic shapes typically found in the lit- 
erature are often based on hypothetical considerations. 
Nevertheless, in most of the experiments shown here, 
the primary inclined faults were initialized by upward 
roof flexure, starting at the surface and then propagat- 
ing downward; the peculiarities of the border geometry 
would have no influence on this. It is also seen that the 

faults initialized from below do not start at the chamber 

corner but at some distance from it (Figure 10). Thus 
it is unlikely that the geometry of the chamber corners 
significantly contributes to fault initialization. Our pre- 
liminary tests have shown that the faults appear at the 
same aspect ratios for effectively spheroidal or ellipti- 
cal chambers (compare also with rounded chambers in 
Plate 1). 

Our model accounts for various magma chamber 
shapes, but we did not really tackle the problem of how 
such magma chamber geometries can be emplaced in 
the shallow crust. As was mentioned in the modeling 
section, we conducted a number of preliminary experi- 
ments on this problem and obtained quite encouraging 
results showing that (1) an ascending magma cham- 
ber may create surface faults long before its emplace- 
ment close to the surface and (2) the depth of a silicic 
magma reservoir is largely controlled by the brittle sur- 
face layer, not necessarily by the level of neutral buoy- 
ancy as commonly suggested [Ryan, 1987; Lister and 
I(err, 1991]. Nevertheless, a more complete approach 
would be needed to incorporate (1) the magma emplace- 
ment within the crust, (2) the formation of the magma 
reservoir, and then (3) the formation and evolution of 
a caldera following the explosive eruption. 

In the numerous cases of a large and thick silicic 
magma reservoir settled at a shallow level our thermo- 
mechanical approach helps to constrain the geometry 
of the mechanical magma chamber. Usually, magmatic 
reservoirs are defined thermally or compositionally: for 
example, the thermal definition implies that the reser- 
voir is delimited by a specific isotherm roughly corre- 
sponding to the boundary between the "mushy" zones 
and the embedding rocks. In our model the heat diffu- 
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sion from the hot magma body allows us to determine 
the geometry of a ductile aureole around the chamber. 
This aureole is delimited by a brittle-ductile transition 
(BDT) contour within which the magma is able to in- 
flate or be replenished. Brittle faults, and especially 
fractures, can be formed only outside the BDT con- 
tour. The BDT contour can be relatively insensible to 
changes in the bulk reservoir geometry until very sig- 
nificant changes occur in magmatic activity but can be 
quite affected by changes in the thermal regime or fluid 
content that modify the mechanical properties of the 
rocks. 

Another result of this study suggests that it is not 
always necessary to refer to the complexity of the mag- 
matic systems to explain some of their complex sur- 
face signatures, for example, nested calderas. We have 
shown that without any additional complications to the 
model, secondary faults embedded within border faults 
can De easily created in large aspect ratio calderas. Of 
course, the reader should keep in mind that we con- 
sidered only simplified geometries in our model that 
yielded symmetrical nested structures, which are rarely 
found in the field (see, however, the case of the San 
uan caaras duster 

Appendix A' Caldera Snapping 

Assuming axial symmetry in 2-D Cartesian plane, we 
can consider a semicaldera with radius _R and roof thick- 

ness d (Figure 3). Neglecting the horizontal forces, we 
obtain the following simple 2-D biharmonic equilibrium 
equation for the chamber roof: 

V•[O(•)V•w] = V•[O(•)w "] = P(•), (A•) 

where D is the flexural rigidity and w" is the second 
spatial derivative of the vertical deflection of the roof 
w. The normal load on the sides of the roof (overpres- 
sure p and/or deposits) P(x) is equal to -p+pgh, where 
p is the material density and h is the deposit thickness 
(Table 2). As a first step, the normal load can be re- 
placed with an integral action of a cutting force F ap- 
plied at the center (Figure 3), whereupon (A1) becomes, 
forx <R, 

"] = 0. (^2) 
This equation requires four boundary conditions: (1) 
the effective load of deposits at the center of the roof 
(x = R)equals F; (2) the tip of the free edge is not 
curved; (3) the border end of the cover (at x = 0) is 
fixed before the snapping/faulting occurs; and (4) the 
fixed end is not inclined. Conditions 1-4 can be written 

as follows: 

R 

- F J P(m)dx; w"l - 0; wlo - 0; W'1o - 0. 
o 

(A3) 
Assuming for simplicity that D(•) =const= D, we 

get w"" = 0, that is, w m - C1 =const. Since the first 

derivative of the flexural moment M(M = -Dw"), M', 
equals F, we get w'" = -M'/D = -F/D, which yields, 
using the boundary condition 2, w" = -F(x- R)/D. 
Using the boundary conditions 3-4, we get 

w - Fx2(n- x/3)/20. (A4) 

The elastic flexural stress c% in the rigid core of the 
cover can be written as 

= -c• - •/•(1 - v=) • 
= E(1 - y2)-l(y_ 0.5T•)w" (A5) 

or 

o'• = O 1 - v 2 (y - 0.5T•)(x - R). (A6) 
The material starts to "snap" when the bending 

stress c% reaches the limit of plastic (brittle) yielding 
at depth y, crv' 

c% - •v - 0(•,- •p) + •o, (A7) 

where •, -•p is the difference between the normal and 
the pore pressure, 0 is the internal coefficient of friction 
of the material, typically 0 • tg(•/6), and •o is the 
cohesive rock strength, typically 10 to 20 MPa at the 
surface and 20-30 to 40-60 MPa at the bottom. 

Since the local radius of curvature of the cover is 

r•, m -(w") -1 = -O/F(x- R), we can estimate 
the critical value of the radii of curvature at which 

the plate is no longer elastic and starts to snap, i.e., 
r•v - -D/F•(x- R), where the critical edge force F• 
is found from equating the condition of plastic yield- 
ing (A7) to the expression for stress (A6). As follows 
from this expression, the minimum radius of curvature 
is reached at the border of the cover, and thus it is 
here that the cover will tend to snap. The critical cur- 
vature is conditioned by three controllable parameters' 
the rigidity D, which can be computed from the known 
thickness of the cover d; the estimable value of the edge 
force F, which is proportional to the normal load (de- 
posits and overpressure); and the known radius R of the 
caldera. 

Commonly inferred values for E and v are 6.58 x 101ø 
to 8 x101ø N m -2, and 0.25, respectively [e.g., Watts, 
1978; Turcotte and Schubert, 1982]. Assuming T• m d- 
2.5- 5 km, this will yield the following values of D' 

D- ET• = 1019- 10 20 N m. (A8) 
Taking commonly inferred values of the brittle rock 

strength at the surface (5-10 to 20 MPa) we can es- 
timate the value of the critical curwtures leading to 
formation of the border faults. Assuming that ae - a• 
at z-0, weget 

(A9) 

Considering a homogeneously distributed load 
P(x) - P, instead of the edge force F, we can obtain 
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the solution of (1) in the form [Turcotte and Schubert, 
1982] 

w- PD-•z2(z2/24- Rz/6 + R2/4), (A10) 

which yields 

(All) 

The bending stress at the surface equals: 

•r - 6d-2P(x2/2- Rx + R2/2), 

which has a maximum value 3P(R/d) 2 at z - 0 (bor- 
der). Consequently, the normal load P sufficient to 
break the cover at the border can be 3(R/d) 2 times 
lower than its brittle strength' 

cre/P- 3(R/d) •. (A12) 

Appendix B' Heat Refraction 
Within Caldera Settings 

The model is based on the solution of dimensionless 

thermal diffusion equation in Cartesian geometry. The 
caldera extends from the surface to a depth of 1, which 
stands for the base of the ash flow units (Figure 4). A 
constant unit heat flux (= 1) is imposed as a lateral 
condition at z--> +cx>, which is equivalent to a homo- 
geneous heat flux condition far away from the caldera 
within the whole depth interval 0 <_ z < 1. The ther- 
mal perturbations are studied only in the domain z < 1, 
because with z > 1 these perturbations will be rapidly 
damped away due to the constant heat flux condition at 
infinity. There are no heat sources in the model. Border 
faults (or quartz-rich veins) are vertical and symmetri- 
cally located at a < < b, where x - 0 is the center of 
the caldera. Thermal conductivity is k! in the quartz- 
rich fault and hi within the ash flow tuffs. They are 
nondimensionalized using the value for the host rocks 
k• - 1. Several cases for fault widths fw - (b- a), 
conductivity values, and conductivity ratios rk - k!/hi 
have been investigated. The steady state heat equation 
in Cartesian geometry can be written as follows' 

AT(x, z) - 0, (B1) 

where T(x,z) is 2-D temperature distribution. Taking 
T/, Tf, and Tex as the temperature fields inside the 
ash flow caldera (Ixl _< a), within the ring fault (a _< 
Ixl _< b), and outside the caldera (Ixl _> b), respectively, 
the surface temperature is kept equal to zero and the 
bottom temperature equals i far from the caldera as a 
consequence of the lateral constant heat flow condition 
at infinity' 

z - 0) - z - 0) - z - 0) - 0, (e2) 

OT•x (x z)- 1 (B3) lim k• , . 

Owing to symmetry, there is no horizontal temper- 
ature gradient at x - 0, and due to continuity, tem- 
peratures and horizontal heat flow through the vertical 
interfaces (Ixl- a and Ixl- b) must be equal. More- 
over, temperature is supposed to increase with depth 
throughout the whole area of Figure 4: 

aT (z z) > 0. (B4) Oz ' 

Despite these assumptions, one condition is still miss- 
ing for solving the heat equation. For this we have im- 
posed a final condition at the surface and at the center 
of the caldera: 

lim ki ( OTi • a>>• •zz J (x - 0, z- 0) - 1. (B5) 
This condition is valid only for large calderas. With 

such geometries the isotherms are locally disturbed at 
the caldera borders but reach a constant heat flux state 

far away from them, i.e., not only at infinity but also at 
the caldera center x - 0. Even for very strong (rk - 30) 
conductivity ratios, the constant heat flow condition at 
the center is valid within only 5% error where caldera 
diameters are > 4 times caldera thickness. For a repre- 
sentative conductivity ratio of r• - 4 and for the same 
caldera diameter, the error is < 3%. 

In Cartesian geometry the solution for temperature 
is dimensionless and can be expressed via Fourier series 
(where qr• are wave numbers and ar•, bm and Cr• are 
Fourier coefficients) as 

2•(x, z) - Z amcosh(qmx)sin(qmz) + Gi.z, 

Ixl _< a (B6) 

Tf(x, z) - Z bmcosh(qmx)sin(qmz) + Gf.z, 
m--0 

a _< Ix l _< b (B7) 

T•(x, z) - Z cmexp(-qmx)sin(qmz) + G•.z, 
m----0 

Ixl _> b, (B8) 

where Gi, Gj, and Ge are vertical gradients, Ge and Gi 
being constants. Because temperature is not disturbed 
away from the caldera, we must have Ge = 1. Fourier 
series can also be used for the second terms (with three 
other Fourier coefficients): 

• amSin(qmZ), Gf.z- • fimSin(qmZ), 
m--O m--O 

• 7,•sin(qmz). 
m--0 

(B9) 

The conditions OT/Oz > 0 and G• 
using 

-- 1 are verified 
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(2m + 8(-1) TM 
ß (B10) qr• - 2 , 7r• •r2(2r n + 1) 2 

Using both boundary and continuity conditions, we 
can obtain all Fourier coefficients: 

ar: (1- cosh(qrb)+ hsinh(qrb) 
(Bll) 

ki 

br• - arc,f, Cr• -- -ar•-[sinh(qr•b)exp(qr•b) (B12) 
kt ki 

am - 7m •ii ' /•rn -- am + am cosh ( qm a ) (1 - •-ff ) , 
where k•: 1. This solution enables computations of 
steady-state heat refraction effects in two dimensions, 
and is suited for the case of large calderas. Analytical 
expressions from (B6) to (B13) have been modified to 
avoid summing positive exponential terms, and an ac- 
curacy of 0.1% was easily reached with < 5000 terms in 
the series. Details of the results are shown in Figures 5, 
6, and 7. 
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