Interference of lithospheric folding in western Central Asia by simultaneous Indian and Arabian plate indentation

J.H.W. Smit a, S.A.P.L. Cloetingh b,⁎, E. Burova,⁎, M. Tesauro d, D. Sokoutis b, M. Kaban d

a ISTeP, University P & M Curie, 5, Place Jussieu, case 129, 75252 Paris Cedex 05, France
b Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
c UMR CNRS 7193, 4 place Jussieu, 75252 Paris, France
d GeoForschungsZentrum Potsdam, Telegrafenberg A 17, D-14473 Potsdam, Germany

⁎ Corresponding author. Tel.: +31 30 2537314.
E-mail addresses: jeroen.smit@upmc.fr (J.H.W. Smit), sierd.cloetingh@uu.nl (S.A.P.L. Cloetingh), evgenii.burov@upmc.fr (E. Burov), magdala@gfz-potsdam.de (M. Tesauro), dimitrios.sokoutis@uu.nl (D. Sokoutis), mikhail.kaban@gfz-potsdam.de (M. Kaban).

Article info
Article history:
Received 2 March 2012
Received in revised form 9 September 2012
Accepted 30 October 2012
Available online 7 November 2012

Keywords:
Indentation
India–Eurasia collision
Arabia–Eurasia collision
Lithosphere folding

Abstract
Large-scale intraplate deformation of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented. In contrast, the impact of continental collision between Arabia and Eurasia on lithosphere tectonics in front of the main suture zone, has received much less attention. The resulting Neogene shortening and uplift of the external Zagros, Alborz, Kopet Dagh and Caucasus Mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5 Ma. At the same time, subsidence accelerated in the adjacent Caspian, Turan and Amu Darya basins. We present evidence for interference of lithospheric folding patterns induced by the Arabian and Indian collision with Eurasia. Wavelengths and spatial patterns are inferred from satellite-derived topography and gravity models. The observed interference of the patterns of folding appears to be primarily the result of spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang–Tunka Line.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Cenozoic collision with both India and Arabia affects Eurasia from the Aegean to the Pacific (e.g., Yin, 2010). The two indenting Indian and Arabian plates set up a stress system in the adjacent segment of the Eurasian plate northward and westward of the plate boundary, respectively (e.g., Hatzfeld and Molnar, 2010; Liu and Bird, 2008). This stress system is affecting the intraplate topography up to distances of the order of a few thousands of kilometres, leading to significant differential vertical motions.

Obviously, the India–Eurasia collision is by far the most dominating factor in the eastern segment of the Alpine–Himalayan collision belt because it has accommodated more shortening (e.g., Hatzfeld and Molnar, 2010). At the same time, the contribution of the Arabian indenter to the deformation of Central Asia cannot be neglected. The simultaneous nature of both indentations operating under a high angle generates a geometrical interference, with a plan view pattern detectable by large wavelength anomalies in gravity and surface topography (Fig. 2). The origin of this deformation has been addressed by a large body of observational and modelling studies (e.g., Agard et al., 2011; Burg and Schmalholz, 2008; van Hinsbergen et al., 2011). A number of mechanisms for the mode of intraplate deformation have been proposed, including lithosphere folding and associated brittle deformation in the upper crust (e.g., Burg et al., 1994; Burov and Molnar, 1998; Cloetingh and Burov, 2011). A striking observation is the spatial patterns in differential vertical motions in the areas west and northwest of the Tien Shan and north of the Kopet Dagh (or Kopet Dagh), the main deformation zones related to the collision of Eurasia with the Indian and Eurasian indenters, respectively. In previous work, the effects of the combined Arabian and Indian indenters in this area have been studied on basin scale (Reiter et al., 2011), examining the thin-skinned deformation.

In this paper, we investigate whether these spatial patterns can be the result of the interference of lithospheric folding. It is common knowledge that waves with different orientations will interact with each other. Lithosphere folding, by its nature similar to a standing wave (e.g., Burov and Cloetingh, 2009; Cloetingh and Burov, 2011), is not likely to be an exception. A number of studies have investigated fold interference and fold interference patterns in geology, initially mainly from an analytical (e.g., Ramsay, 1967) and analogue modelling perspective (e.g., Ghosh and Ramberg, 1968; Ghosh et al., 1995; Grujic, 1993) and more recently through regional studies (e.g., Simón, 2004) and a numerical modelling approach (e.g., Kaus and Schmalholz, 2006; Lechmann et al., 2011; Schmalholz, 2008). In the present paper, we point out that collision of the Eurasian plate with the Arabian and Indian plates generates folding of the Eurasian lithosphere in two
Central Tien Shan consists of an alternation of ranges and basins separated by the Pamirs in the south and the Baikal rift zone in the north. The nature and timing of Neogene intraplate deformation in front of the Tibetan Plateau (Yin, 2010). A number of recent studies have provided constraints on the timing of the graphic depression north of the Tibetan Plateau (Yin, 2010). The Central Asian deformation domain (Yin, 2010) is bordered west, the Kazakh Hills in Northern Kazakhstan have been subjected to their inception, away from the plate boundary.

2. Nature and timing of Neogene intraplate deformation in front of the Arabian and Indian indenters

Asia constitutes two broad Cenozoic deformation zones separated by the Afghan/Helmand block (e.g., Yin, 2010); the India–Asia collision zone in the east and the Arabia–Asia collision zone in the west (Fig. 1). To the west, the north–northwest-heading trend towards the Lut block accommodates the northward indentation of Arabia into Asia. Numerous studies have addressed the strike–slip deformation in east Iran (e.g., Bonini et al., 2003; Le Dortz et al., 2011; REGARD et al., 2004). Indentation of India is separated from the Afghan/Helmand block by the left-lateral Chaman Fault system (e.g., Yin, 2010) (Fig. 1). The first-order spatial features of intraplate deformation are strikingly similar in the area north of the Indian and Arabian indenters (Hatzfeld and Molnar, 2010) (Fig. 2), whereas the basins and ridges in both domains show a northward younging in their inception, away from the plate boundary.

2.1. India–Eurasia collision

The collision of India with Eurasia seems to have occurred between 55 and 45 Ma, starting with thrusting in Tibet (e.g., Hatzfeld and Molnar, 2010; Yin, 2010 for review). The subsequent extrusion of SE Asia, 32–17 Ma (Yin, 2010), was one of the first far-field effects of collision on intraplate deformation to be recognised (e.g., Cunningham, 2005; Molnar and Tapponnier, 1975; Van Hinsbergen et al., 2011) (Fig. 1). The Central Asian deformation domain (Yin, 2010) is bordered by the Pamirs in the south and the Baikal rift zone in the north. The Central Tien Shan consists of an alternation of ranges and basins separated by reverse faults (Buslov et al., 2007; Cobbold et al., 1993).

Prior to ca. 25 Ma, Cenozoic intracontinental deformation was confined mostly inside Tibet. It was likely that the present Tarim and Junggar basins were linked as one unified basin at this time before the formation of the Tien Shan range, forming a broad topographic depression north of the Tibetan Plateau (Yin, 2010). A number of recent studies have provided constraints on the timing of the Neogene uplift of the Tien Shan (e.g., Charreau et al., 2009; De Grave et al., 2007; Sobel et al., 2006, 2011). Mountain growth as an effect of the India–Eurasia collision propagated northward and reached the northern Tien Shan at ca. 11 Ma and the Altai–Sayan area as well as Lake Baikal at 5 Ma (Buslov et al., 2008). To the northwest, the Kazakh Hills in Northern Kazakhstan have been subjected to denudation during the past 3 Ma. This denudation has led to extensive aeolian erosion, which suggests that the Kazakh Hills were one of the source areas of the Central Asian loess (e.g., Buslov et al., 2008).

The Tien Shan terminates west of the right-lateral Talas–Fergana Fault by splaying into two narrow mountain chains that surround the Fergana Valley (Figs. 2 and 3). A narrow belt of mountains parallel to the central section of the fault slopes downward to the Fergana Valley, underlain by a deep basin with as much as 8 km of Cretaceous–Cenozoic sediments (e.g., Cobbold et al., 1993). The gravity data suggest that the Fergana and Tadjik basins are gravitationally overcompensated, with a several kilometres deeper Moho than predicted by local isostatic models (Burov et al., 1990).

Constraints are available on present-day deformation rates from GPS and geologic slip rates along faults (e.g., Calais et al., 2006; Mohajer et al., 2010; Reilinger and McClusky, 2011; Vergnolle et al., 2007; Zubovich et al., 2010), yielding estimates for horizontal displacement of up to 1.5 cm/yr.

2.2. Arabia–Eurasia collision

Continental collision of Arabia with Eurasia that has been active since the late Oligocene was largely accommodated along the Zagros suture zone and to a small extent along the Alborz Mountain belt during most of the Miocene (for recent reviews see e.g., Agard et al., 2011; Moutthereau et al., 2012). The formation of the East Anatolian and Arabian Plateaus as well as the Lesser Caucasus began in the Serravalian (ca. 12–14 Ma) (e.g., Dewey et al., 1986; Forte et al., 2010; Guest et al., 2006; Hüsinger et al., 2009; Sengör et al., 1985). Since ca. 5 Ma, deformation moved rapidly further outward. The outward propagation is manifest in the growth of the Zagros foreland fold-and-thrust belt in the south and in the north by rapid uplift of the Alborz (Axen et al., 2001; Guest et al., 2007), Kopet Dagh (Lyberis and Manby, 1999) and Caucasian (Avdeev and Niemi, 2011; Brunet and Clocloingh, 2003; Brunet et al., 2009; Egan et al., 2009; Forte et al., 2010; Guest et al., 2007), mountain belts that formed along old sutures separating the Iranian microblocks from Eurasia (e.g., Brunet and Clocloingh, 2003; Lyberis and Manby, 1999; Nikishin et al., 2002; Thomas et al., 1999a). These Miocene events reflect changes in the kinematic of the Arabian plateaus described from its southern and western boundaries (e.g., Smit et al., 2010).

The Alborz Mountains, have a present-day elevation of 2–4 km and a missing crustal root (Sodzi et al., 2009) (Fig. 4). Results from geothermochronology demonstrate a rapid phase of uplift, with rates of 0.7 km/My exhumation between 6 and 4 Ma (Axen et al., 2001), implying approximately 10 km of uplift of the Alborz Mountains. The uplift in the Alborz was nearly synchronous with rapid subsidence in the South Caspian Basin (Nadirov et al., 1997) and subsequent folding (Devlin et al., 1999). The South Caspian Basin is probably one of the deepest sedimentary basins in the world with an estimated sedimentary thickness up to 20 km (e.g., Brunet et al., 2009; Mangino and Priestley, 1998). Nadirov et al. (1997) showed that South Caspian sedimentation rates locally increased more than tenfold at ca. 6 Ma, with more than 10 km sediments deposited since then. As argued by Axen et al. (2001), if approximately 10 km of post 6 Ma sediments are present in this basin, then as much as 20 km, equivalent of 80% of the structural relief of about 25 km between the high Alborz and the southernmost Caspian basement may be younger than 6 Ma. The transition between the South Caspian Basin and flanking Alborz is abrupt and coincides with a coastline bounded by a major reverse fault system. A mountain range, a few kilometres high next to a 20 km deep basin is highly anomalous in terms of differential topography. The substantial gravity anomalies have a wavelength characteristic for lithosphere scale deformation including an upper mantle component. It is exactly for this reason that various authors (e.g., Jackson et al., 2002) have emphasised the need for a contribution by lithospheric dynamics. The residual mantle gravity field, which is obtained after removing of the crustal effect from the observed data, demonstrates an exceptionally large anomaly over the basin (Kaban, 2002).

The lack of a crustal root under the Alborz Mountains points to a flexural support by the South Caspian basement. Abnormal mantle (Kadinsky-Cade et al., 1981) and late Cenozoic alkaline igneous rocks in the Alborz suggest that buoyant mantle is a factor as well (Axen et al., 2001; Guest et al., 2007) have argued in favour of compressional deformation in the Alborz. The observations are consistent with a several kilometres deeper Moho than predicted by local isostatic models (Burov et al., 1990).
2.3. West Central Asia: the Turan and Kazakh domains

West Central Asia, the area located between the Tien Shan and the Caspian Sea and north of the Kopet Dagh and Alborz, is characterised by a system of parallel NW–SSE trending ridges and basins, among which the Amu Darya Basin (Figs. 2 and 3) (see also Thomas et al., 1999a). This trend is parallel to the Palaeeotethys suture along the Alborz and Kopet Dagh Mountains (Fig. 2b). These ridges and basins have a long polyphased history dating back to at least the early Mesozoic. The latest phase of renewed vertical movement has been dated as latest Neogene (e.g., Thomas et al., 1999a, 1999b; Belousov et al., 2001). Evidence for active differential uplift of the mountain ridges and basins of the Turan block and the South Kazakh domain, with systematically faster uplift of the mountain ridges has been presented by Thomas et al. (1999a, 1999b) and by Jaboyedoff et al. (2005).

Reactivation and fast uplift in the Kyzyk Kum and Karatau Mountains is mainly post-Miocene (for review, see Belousov et al., 2001), contemporaneous with both the inversion of the Kopet Dagh and the increased shortening in the Tien Shan and the Pamir (e.g., Fu et al., 2010; Heermann et al., 2008). Uplift of the series of mountain ridges is often attributed to recent dextral movement along long-lived fault zones like the Talas Ferghana Fault in the Karatau Mountains that currently moves at a rate of ~2 mm/yr (e.g., Zubovich et al., 2010).

Fig. 2 displays the topography (Fig. 2a) and GRACE satellite gravity map (Fig. 2b) of Central Asia with structural trends superimposed. The young (0–10 Ma) topography of the series of parallel NW–SE trending ridges have been attributed to dextral displacement along long-lived shear zones caused by the indentation of India (e.g., Zubovich et al., 2010) and to intraplate lithosphere scale deformation of the East European Platform and Central Asia (Nikishin et al., 1993, 1997).

Whereas the Kopet Dagh, Kyzyk Kum and Karatau ranges are strikingly parallel, the geological map (Fig. 3, after Thomas et al., 1999a, 1999b) shows that the outcropping Neogene strata and its Pliocene–Quaternary sedimentary cover do not follow this pattern. Along the central axis in the northern half of the Turan Basin where the Pliocene–Quaternary units should be reaching maximum thickness, the Neogene crops out instead. The same occurs in the Cyr Darya Basin. The Neogene does not outcrop along the rim of the basins as to be expected, nor does Pliocene–Quaternary thickness increase downstream the main rivers. Obviously, the outcrop pattern of the Neogene and Quaternary units as drawn in the geological map (Fig. 3b) point to a non-cylindrical deformation during Pliocene and Quaternary times. Therefore, it appears that dextral strike–slip along faults like the Talas–Ferghana Fault cannot explain the large-scale patterns of differential topography of the Turan and South Kazakh domains. Estimates for the thermo-mechanical age, the time elapsed after the end of the last important thermal perturbation, vary from 200 to 300 Ma, corresponding to thermal resetting by the amalgamation of magmatic arcs during the Early Mesozoic Eo–Cimmerian orogeny (Garzanti and Gaetani, 2002; Thomas et al., 1999a, 1999b).

3. Thermo-mechanical structure of the lithosphere

As pointed out previously, lithospheric heterogeneity in the area is obviously playing an important role in the architecture of the deforming intraplate lithosphere. Pronounced rheological contrasts have been inferred (Tesauro et al., 2012, this volume) between the relatively weak lithosphere underlying the area of Central Asia east of the Kugitang–Tunka Line and the relatively strong lithosphere in the Turan plate, Kazakh Domain and the Caspian Basin region, both located westward of the Kugitang–Tunka Line (Fig. 5). Fig. 5a shows the depth to Moho (Kaban, 2002). Thick crust under the Caucasus and Tien Shan reflects the presence of roots separated by areas of thinner crust. Spatial variations in bulk rheology occur also in a north–south direction, with the weakest lithosphere close to the collision zone (Tesauro et al., 2012, this volume) (Fig. 5b–d). At the far north, facing the area primarily affected by the Arabian plate indenter, the strong lithosphere of the Kazakh shield forms a buttress to the deformation set up by the collision. The same is true for the West Siberian shield located at the far front of the Indian plate indenter. The contrast in thermo-tectonic age and crustal thickness leads to a relatively strong lithosphere westward of the lineament reflected in the estimate of 45–60 km for its effective elastic thickness (Fig. 5e).

4. Folding as a mechanism for intraplate deformation in front of the indenters

4.1. The concept of lithospheric folding

Lithosphere folding has been recognised as an important mode for intraplate deformation and sedimentary basin formation (e.g., Burg and Podladchikov, 1999; Cloetingh and Burov, 2011; Lechmann et al., 2011; McAdoo and Sandwell, 1985; Stephenson and Lambek, 1985). Different simultaneously occurring wavelengths of crustal and mantle folding are a consequence of the rheological stratification of the lithosphere (Burov et al., 1993). Decoupled continental lithosphere folding has separate wavelengths for crustal and upper mantle deformation (Cloetingh and Burov, 2011). Surface wavelengths can be affected also by feedback with surface processes (Cloetingh and Burov, 2011). Both analogue and numerical experiments of intraplate deformation demonstrate the direct mechanical coupling within the layered lithosphere which gives rise to large-wavelength deflection at deeper levels and short-wavelength deformation by thrusting at or near the surface (e.g., Burov and Cloetingh, 2009; Cobbold et al., 1993; Fernández-Lozano et al., 2011; Guest et al., 2007; Martinod and Davy, 1994; Schmalholz et al., 2009; Sokoutis et al., 2005). Folding leads by its nature to brittle deformation manifested in pop-up structures in the deforming lithosphere as documented by field and modelling studies (e.g., Burg and Podladchikov, 2000; Cloetingh et al., 1999; Cobbold et al., 1993; Fernández-Lozano et al., 2011; Martinod and Davy, 1994).

As pointed out by numerous quantitative studies on lithosphere folding, amplitudes and wavelengths of folding can be calculated for a given rheology and thermo-mechanical age of the lithosphere. Constraints are provided from basement deflection in the downwaved portion of the lithospheric fold and surface topography in the upward part of the fold. Both estimates are sensitive to effects of erosion and sedimentation intrinsically amplifying and reducing amplitudes.
In addition, constraints on amplitudes are provided by gravity and seismic data and Moho deflection. It is now recognised and supported by both numerical (e.g., Burg and Podladchikov, 2000; Cloetingh et al., 1999; Guest et al., 2007; Lechmann et al., 2011; Schmalholz et al., 2009) and analogue modelling studies (e.g., Burg et al., 1994; Cobbold et al., 1993; Davy and Cobbold, 1991; Sokoutis et al., 2005) that folding of the lithosphere, involving its synclinal as well as anticlinal deflection (Figs. 6 and 7), in general plays a more important role in the large-scale deformation of intraplate domains than hitherto realised (Burg and Podladchikov, 2000; Cloetingh et al., 1999; Guest et al., 2007; Hofold et al., 2009; Shin et al., 2009). These studies showed that folding starts to develop from the beginning of compression and does not always require large intraplate stresses (Bourgeois et al., 2007; Burov et al., 1993; Cloetingh et al., 1999; Fernández-Lozano et al., 2011; Gerbault et al., 1999; Nikishin et al., 1993, 1997).

Folding as a mode for intraplate deformation is closely related to transmission of intraplate stress fields away from plate boundaries into continental interiors (Van der Pluijm et al., 1997; Ziegler et al., 1998), affecting rifted continental margins (Johnson et al., 2008; Muñoz-Martín et al., 2010) and back-arc basins (Dombrádi et al., 2010) as well. Folding has important implications for vertical motions, sedimentary basin architecture and the evolution of hydrocarbon systems (e.g., Cloetingh et al., 2010; Ziegler et al., 1995, 1998).

4.2. Characteristics of lithosphere folding in front of the Indian indenter

Early studies of the effects of India–Eurasia collision on intraplate deformation have demonstrated the existence of large-scale folding in the oceanic lithosphere in the Bay of Bengal (Geller et al., 1983; Gerbault et al., 1999; McDaid and Sandwell, 1985; Stein et al., 1989). Subsequent studies have drawn attention to the folding of continental lithosphere in Central Asia northward of the Indian indenter, expressed both in topography and gravity (Fig. 1) (e.g., Burg et al., 1994; Burov and Molnar, 1998; Cobbold et al., 1993; Nikishin et al., 1993, 1997). The inferred wavelength of these active tectonic lithosphere folds from prominent examples such as the Ferghana, Tadjik and Tarim basins, is consistent with the general relationship, established on the base of a global inventory of lithospheric folds (Cloetingh and Burov, 2011), between the wavelength of lithospheric folds (typically in the order of several hundreds of kilometres) and the thermo-tectonic age of the lithosphere (Fig. 6a, b). At the same time, smaller crustal folds have been detected in these areas.

The young Ferghana, Tadjik and probably Junggar basins, located northwest and north of Pamir and south of the Tien Shan ranges, underwent Jurassic rejuvenation and are therefore characterised by relatively young thermo-mechanical ages (150–175 Ma, the time elapsed after the end of the last important thermal perturbation) (Burg et al., 1994; Burov and Molnar, 1998). These basins probably have a weak lower crustal rheology (quartz-dominated), resulting, together with the relatively young thermal age in low observed values for the effective elastic plate thickness of the order of 15 km (Burov et al., 1990, 1998; Kogan and McNutt, 1987).

The approximately north–south shortening of the relatively thin lithosphere, at a present-day shortening rate in the order of 10 mm/yr, has created mountains north and south of these basins, has warped the basement of the immediate surroundings of each basin up by folding the mantle lithosphere, and has forced the basin floor down. For the Ferghana Valley, the estimated folding wavelength is in the order of 200–250 km, possibly associated with localised mantle deformation (e.g., Burov et al., 1998; Cobbold et al., 1993). It appears that the pre-existing thermal structure and variations in crustal thickness have played a major control on the styles and distribution of the intraplate deformation in this region (Fig. 2) (e.g., Burov et al., 1998).
Primary faults, with spacing proportional to brittle layer thickness, probably appeared before folding developed, but since then the two processes, faulting and folding, co-exist in such a way that faulting is accommodated by folding with faults localised at the inflection points of folds (e.g., Cloetingh et al., 1999; Gerbault et al., 1999; Martinod and Davy, 1994). At this stage, the appearance of faults does not significantly influence the wavelength of folding. Because of the weakness of the lower crust, the upper crust is completely decoupled from the mantle and interacts with it only by flow in the lower crust.

In the area of the Tarim Basin, with a thermo-mechanical age of 400 Ma, mantle and crustal wavelengths are 360 and 50 km, respectively. At the northern margin of the Tarim Basin, sediments are deposited over a more than 350 km wide area. These wavelengths suggest a dominant control by mantle or whole lithospheric folding. In contrast, the geometries imaged by the 1000 km long deep seismic refraction profile in the northern margin of the Tibetan Plateau reveals the existence of basins with typical widths of 50–100 km (Liu et al., 2006), suggesting a control by crustal scale folding. It should be noted that results of deep refraction/wide angle reflection profiling for the southeastern margin of the Tibetan Plateau (W. Mooney, pers. comm., 2008) provides evidence for folded lithosphere overlain by sedimentary basins with typical widths of 200–250 km. The associated mechanical coupling between deforming crust and mantle lithosphere is consistent with detected folding wavelengths of the order of 350–450 km, and predictions from numerical modelling (Fig. 6b) (Cloetingh and Burov, 2011).

4.3. Characteristics of lithosphere folding in front of the Arabian indenter

Wavelengths for compressional folding of the lithosphere in northern Iran and the South Caspian Basin are typically in the range of 400 km (Fig. 4). Although the actual basin mechanism for the formation of the Caspian Basin is not well resolved, late Neogene folding has been affecting a lithosphere probably thermally reset by middle late Jurassic marginal basin formation (Guest et al., 2007) with a thermo-mechanical age at the onset of collision of 130–150 Ma.

The deepest synclinal basins such as the South Caspian Basin can be found close to the plate contact where stresses reach maximum levels. Both numerical and analogue models predict preferential development of deep and wide synclinal basins flanked by more modest and relatively narrow anticlinal topographic heights (e.g., Fig. 7b). Sedimentation in the synclinal basins and erosion from uplifted highs further amplifies the differential topographic signature of folding.

Like the Alborz, the Kopet Dagh and the South Caspian Basin, the area located between the Tien Shan, the Caspian Sea and north of the Kopet Dagh, is undergoing renewed differential vertical movements since the latest Neogene–early Pliocene (e.g., Belousov et al., 2001; Jaboyedoff et al., 2005; Nikishin et al., 1997; Thomas et al., 1999a, 1999b). Reactivation and fast uplift in the Kyzyl Kum and Karatau Mountains are contemporaneous with both the inversion of the Kopet Dagh and the increased shortening in the Tien Shan and the Pamir (e.g., Fu et al., 2010; Heermance et al., 2008). Contemporaneous differential vertical motions of a series of parallel mountain ranges and sedimentary basins over such a large area are a strong indicator for
lithosphere folding. A thick crust and a weak rheology, characterised by estimates for the effective elastic thickness of the order of 25–30 km (Fig. 5e) are present in western Central Asia. This lithospheric configuration promotes mechanical decoupling of the crust and upper mantle lithosphere, as indicated in the strength distribution (Fig. 5f, profile A). This feature appears to be consistent with the observation of different wavelengths for crust and mantle folding of 50–70 km and 300–400 km, respectively (Fig. 8c).

4.4. Folding interference in western Central Asia

In the previous two sections, we have described indications for two, almost perpendicular, directions of lithosphere scale folding in western Central Asia (Fig. 8). The one related to the Indian indenter is NE–SW oriented and perpendicular to the Kugitang–Tunka Line, the other one is related to the Arabian indenter folds and parallel to the NW–SE oriented Kopet Dagh. Clearly, the latter is more
pronounced but the KTL-parallel folds are recognisable as well. Combined, the two sets of India- and Arabia-related lithosphere folds generate an “egg-box” pattern with accentuated positive and negative differential topography that may help to explain the outcrop pattern of Neogene units (Fig. 8b).

5. Numerical and analogue modelling experiments

Numerical modelling and analogue modelling provide a framework to examine the fine structure of the interference and the localisation of deformation. Both complementary approaches provide evidence for partial mechanical coupling of the lithosphere in the folded regions. In particular, the analogue models provide a plan view perspective that demonstrates the propagation of intraplate deformation away from the plate contact. On the other hand, numerical models (e.g., Burov and Cloetingh, 2009; Kaus and Schmalholz, 2006; Lechmann et al., 2011, see also Supplementary material in Appendix A) allow us to take into account thermally dependent rheology of the lithosphere as well as to test the impact of small scale lateral variations in the rheological properties. A number of studies have numerically modelled 3D folding and studied fold interference and fold amplification for different horizontal shortening scenarios (e.g., Kaus and Schmalholz, 2006; Schmid et al., 2008). Lechmann et al. (2011) have investigated 3D folding as a result of indentation for the India–Asia collision using a full 3D numerical model.

5.1. Numerical experiments

As demonstrated by numerical models (Figs. 9 and 10), compressional basins that develop as a result of periodic folding are highly symmetrical, with dimensions that can vary from 50 to 600 km, such as observed in Central Asia (Burov and Molnar, 1998), depending on lithospheric age and shortening rate. These basins can accumulate thick sedimentary sequences up to the order of 20 km, compatible with observations from the South Caspian Basin discussed previously (Fig. 4a). The time scales associated with this process of basin formation are very short, typically a few million years (see also Cloetingh and Burov (2011) for review). The subsidence is so fast that erosion and sediment supply at the basin formation stage typically lag behind, leading to the development of starved basins, followed by shallowing upward sequences after stress relaxation. Subsidence patterns are characteristically convex upwards with time. A noticeable feature is the development of significant topography of the order of several kilometres flanking the synclinal depression. No initial heating is predicted, with an increase in heat flow with time following the basin formation. Significant brittle deformation is expected to occur in the folded basement, accelerating during the folding phase.

Figs. 9 and 10 show the results of the numerical experiments for two different thermo-tectonic ages of the lithosphere, compressed at rates of 1.25 cm a⁻¹. These strain rates are consistent with GPS data from the Tien Shan and geological slip-rates along faults (e.g., Calais et al., 2006; Vergnolle et al., 2007).

As shown, folding is well developed for both medium (250 Ma) (Fig. 9) and older (500 Ma) (Fig. 10) ages of the lithosphere. The deformation is characterised by long mantle wavelengths (360 km) and high surface amplitudes (2000 m after 10 Ma). These experiments (specifically for 250 Ma) compare well with observations from Western Gobi and the Ferghana Basin in western Central Asia (Burov and Molnar, 1998; Burov et al., 1993). At late stages (10–26 Ma since the onset of shortening for 3 cm/yr or 20–50% of shortening), folding becomes aperiodic, sometimes leading to mega-folding (Burg and Podladchikov, 1999, 2000; Cloetingh et al., 1999) and the subsequent formation of high-amplitude crustal down-warping. The amplitude of vertical movements may reach 20 km or even more. As pointed out earlier, such high amplitudes of vertical motions are observed in the South Caspian Basin (Fig. 4a) (Guest et al., 2007). However, it may be relatively rare for folding to continue for periods in excess of 10 Myr. More typically is that at a certain stage deformation localises along single major fault zones (Cloetingh et al., 1999; Gerbault et al., 1999). The transition from lithospheric folding to localised shearing has also been quantified and explained as a result of viscous shear heating in Burg and Schmalholz (2008) and Schmalholz et al. (2009). As was discussed by Bird (1991), Avouac and Burov (1996) and Cloetingh et al. (1999), large-scale undulations of the lithosphere cannot be preserved for a long time (longer than 10 Myr) in the absence of sufficient compression, except for plates with very strong (especially lower crustal) rheology. Otherwise, the folds either will be flattened by gravity-driven crustal flow associated with the large crust–mante density contrast at the Moho, or deformation will localise along some of the faults created at the inflection points of folds. It is noteworthy that interactions between short crustal and longer mantle wavelengths of folding are most pronounced at some intermediate stages of convergence, where the total amount of shortening is on the order of 20–30%. At larger amounts of shortening, short-wavelength deformation is less well expressed compared to the long-wavelength deformation, basically due to partial coupling of folded layers at large-scale fold limbs. At small amounts of shortening (ca. 10%), short-wavelength deformation is more pronounced than long-wavelength deformation. In most cases (lithosphere ages from 250 to 500 Ma) slow convergence (<1.5 cm a⁻¹) generally leads to notable development of short-wavelength crustal folding while long-wavelength mantle folding has no time to overprint short-wavelength deformation within a 20–30 Myr time window. The most prominent
interactions between the short-wavelength and long-wavelength folding are observed for shortening rates of 3 to 5 cm a$^{-1}$. In this case all wavelengths develop by 10 Ma and start to interact with each other. These interactions may have different effects. In some cases short wavelength deformation is simple superimposed on long-wavelength deformation. In other cases, when the wavelengths of the crustal and mantle folding differ from each other by a factor smaller than 2$^{-3}$, the results of inter-layer interactions may be highly counter-intuitive. For example, “phase shifts” in deformation of upper and lower layers may result in regional reduction or amplification of amplitude of folding and in the formation of completely a-periodic structures.

Fig. 11 shows the temporal evolution of topography in 2D and 3D view for slow and fast shortening of thermo-mechanical numerical models of a stratified 250 and 500 Ma old continental lithosphere. This figure illustrates the temporal development of short crustal wavelengths superimposed on large-scale mantle wavelengths. As shown by the numerical experiments, distributed brittle faulting occurs in the upper crust with a spacing controlled by the folding wavelength. Enhanced distributed brittle faulting may occur at different spatial scales determined by the internal structure of the lithosphere (Cloetingh and Burov, 2011).

5.2. Laboratory experiments

The laboratory experiments presented later in this paper allow tracking the 3D nature of oblique indentation by the two Indian and Arabian plates controlling the intraplate deformation in western Central Asia. In the weakened lithosphere in front of the Indian indenter, folding is trending parallel to the plate contact. Northwest of the obliquely trending Kugitang–Tunka Line, fold axes in the relatively stronger western Central Asian lithosphere further away from the plate contact rotate to an orientation parallel to this line. Analogue models show that the presence of heterogeneities such as contrasts in lithospheric properties across a suture zone exerts a main control on the mode of lithospheric folding. Folding of a uniform lithosphere is characterised by an alignment of thrust belts at the peripheral boundaries at the areas experiencing regular folding with similar amplitudes for elevated areas and folded down depressions. Brittle deformation dominated by the formation of pop-up structures in the upper crust is

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Area</th>
<th>Th-tect. age (Ma)</th>
<th>Wavelength, (km)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tien Shan</td>
<td>175</td>
<td>200–250</td>
<td>Burov and Molnar (1998); Burg et al. (1994)</td>
</tr>
<tr>
<td>2</td>
<td>Western Goby</td>
<td>175–400</td>
<td>300–360</td>
<td>Nikishin et al. (1993); Burov et al. (1993)</td>
</tr>
<tr>
<td>3</td>
<td>Central Asia</td>
<td>370–430</td>
<td>50–70 (cr); 300–400 (l-m)</td>
<td>Nikishin et al. (1993); Burov et al. (1993)</td>
</tr>
<tr>
<td>4</td>
<td>Himalayan syntax belt</td>
<td>8–10</td>
<td>150</td>
<td>Burg and Podladchikov (1999)</td>
</tr>
<tr>
<td>5</td>
<td>Russian platform</td>
<td>400–600</td>
<td>500–600</td>
<td>Nikishin et al. (1997)</td>
</tr>
<tr>
<td>6</td>
<td>South Caspian Basin</td>
<td>125–155</td>
<td>350–450</td>
<td>Guest et al. (2007)</td>
</tr>
<tr>
<td>7</td>
<td>Eastern Black Sea</td>
<td>40–80</td>
<td>50–100 (cr); 100–150 (l-m)</td>
<td>Cloetingh et al. (2008)</td>
</tr>
<tr>
<td>8</td>
<td>Western Black Sea</td>
<td>75</td>
<td>50–100 (cr); 100–200 (l-m)</td>
<td>Cloetingh et al. (2008)</td>
</tr>
</tbody>
</table>
an intrinsic feature of this mode of folding (Fig. 7a). In contrast, the presence of a suture zone promotes syncline development leading to ultra deep sedimentary basins with a depth of depression far in excess of the amplitude of the adjacent anticline. This mode of folding is characterised by a pattern of thrusting and upper crustal deformation markedly different from the model displayed in Fig. 7a.

Analogue experiments allow inspection of the three dimensional nature of lithospheric deformation. Of primary control appears to be the
contrast of strong and weak lithosphere and its orientation (for a general discussion, see Sokoutis et al., 2005). Fig. 12 presents a surface view of an experiment of oblique indentation, showing stress transfer across the plate boundary that generates plate boundary parallel folding. Collision with a strong indenter block induces two sets of perpendicularly trending axes of lithospheric folding in the surrounding foreland domain. The free boundary at the right hand side, a common way to allow for lateral escape, diminishes the impact of folding in the upper right part of the deformed area. As shown by the experiment, stresses can propagate over distances several orders larger than the system’s thickness. The wavelength of deformation does not appear to vary with distance from the plate boundary, whereas amplitudes show a gradual decay away from the plate boundary contact. The strong lithosphere is much less deformed than the foreland lithosphere but is affected by folding as well as faulting (Fig. 12). A striking result is that a rather uniformly distributed, low amplitude-large wavelength folding is already initiated shortly after the onset of collision (Fig. 12). With time, amplitudes rise with localisation of folding.

6. Discussion

A careful analysis of geological data, satellite-derived topography and gravity models demonstrates the existence of spatial patterns of intraplate deformation in western Central Asia. The synchronous subsidence and uplift of parallel basins and ridges that are located at relatively large distances from the main collision zones requires a lithosphere scale explanation. As illustrated in this paper, the outcrops of Neogene strata and its Pliocene–Quaternary sedimentary cover form an irregular, non-cylindrical pattern. The Neogene does not outcrop along the rim of the basins as to be expected, nor does the thickness of Pliocene–Quaternary units increase downstream the main rivers. Obviously, the outcrop pattern of the Neogene and Quaternary units as drawn in the geological map (Fig. 3b) points to a non-cylindrical deformation during the Pliocene and Quaternary. Dextral strike–slip along faults like the Talas–Fergana Fault, or cylindrical lithosphere scale folding can explain the large-scale patterns of differential topography of the Turan and South Kazakh domains. Lithosphere folding of the Eurasian lithosphere in front of both India and Arabia has been postulated before. Taking into account that Arabia and India both exert pressure on the Turan plate and South Kazakh domain at high angles of each other (see Fig. 2 for motion vectors), non-cylindrical deformation is to be expected. Later, we discuss inferences from our analysis on the intraplate deformation of western Central Asia obtained from a comparison of observations and outcomes of analogue modelling and numerical modelling presented in this paper. In doing so, we focus on testable expressions in terms of geological and geophysical observables, allowing to discriminate lithospheric folding as a mode of intraplate deformation from other mechanisms. These observables include wavelengths and spatial patterns of intraplate deformation. We also discuss the temporal aspects of the connection between continental collision and intraplate deformation. In addition, we examine the link

![Fig. 9. Thermo-mechanical numerical model of stratified continental lithosphere showing characteristic patterns of deformation induced by folding of the continental lithosphere with time. Increasing amounts of horizontal shortening for a 250 Ma old lithosphere with a convergence rate of 1.25 cm a $^{-1}$. Development of short crustal wavelengths superimposed on large-scale mantle wavelengths. 250 km thick, visco-elastic–plastic continental lithosphere composed of a dry olivine mantle, 40 km thick crust with a granite upper crust and a quartz diorite lower crust.](image)
between intraplate deformation and basin dynamics, and the role of mantle dynamics.

6.1. Wavelengths and spatial patterns of intraplate deformation: manifestation in geophysical and crustal/lithospheric observations

As discussed previously, we have explored whether the wavelengths and spatial patterns inferred from satellite-derived topography and gravity models are consistent with lithospheric folding induced by Arabian and Indian collision with Eurasia. To this aim, wavelengths of folding have been calculated adopting rheologies and thermo-mechanical ages of the lithosphere characteristic for the area. Constraints on the magnitude of the differential topography are provided from basement deflection in the down flexed portion of the lithospheric folds and surface topography in the upward part of the folds. Both estimates are sensitive to effects of erosion and sedimentation intrinsically amplifying and reducing amplitudes respectively. In addition, constraints on amplitudes of the differential lithospheric scale geometry of the intraplate deformation are provided by gravity and seismic data and Moho deflection. As demonstrated previously and in previous work by Burov and Molnar (1998), mantle scale folding has a prime manifestation in terms of its gravity signature and Moho as well as basement topography. As shown by both analogue and numerical experiments presented here, there is a clear link in lithospheric deformation between near-surface brittle deformation and deformation at deeper levels. This applies in particular for lithospheric folding which gives rise to large wavelength deflections at deeper levels and short wavelength deformation by thrusting at or near the surface.

6.2. Interference of patterns of intraplate deformation

We have demonstrated that lithosphere scale folds can be detected in front of, and parallel to both indenters. The resulting interference generates the irregular folding illustrated by the pattern of Neogene and Quaternary outcrops. In this paper, we have explored whether the interference of lithospheric folding could explain the surface topography and gravity over this wide area in front of the Indian and Arabian indenters.

As illustrated by Fig. 13, the documented interference of the patterns of folding appears to be primarily the result of the spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang–Tunka Line. Movement of the indenters perpendicular to the strike of these boundaries is not a pre-requisite to induce the observed trends in undulations oriented parallel to the plate boundary.

6.3. Continental collision and intraplate deformation: temporal aspects

The almost instantaneous nature of the onset of deformation rules out a thermal cause (characterised by thermal time constants of several tens of millions of years). Lithospheric instabilities such as folding, however, are associated with time constants of 0.1 to a few My, making them a feasible mechanism. Our models are also
consistent with outward movement of deformation, away from the orogen along the suture, such as observed from the High Zagros towards the Eurasian foreland lithosphere.

Collision is a continuous process with a number of tipping points in the associated deformation in the foreland lithosphere. In the process of continuous build-up of stresses, plate reorganisations can lead to short-term changes in orientation and magnitude of the induced stress field whereas partial stress relaxation by mechanisms such as lithosphere folding can take place in a punctuated way when stresses reach thresholds of lithospheric strength. Manifestations of short-term perturbations in stress-regime include the closure of (back)arc basins, arc accretion, mountain building by duplex formation and underthrusting along the suture followed by a shift of deformation away from the suture, inversion of basins located further away and intraplate deformation by folding.

Neogene shortening and uplift of the Alborz, Kopeh Dagh and Caucasus Mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography formation at ca. 5 Ma. At the same time, the adjacent Caspian, Turan and Amu Darya basins underwent accelerated subsidence.

6.4. Lithosphere folding and sedimentary basin dynamics

Obviously, a difference must be made between accommodation space and sediment supply. Sediment supply itself can never create the accommodation space needed to store 10 km of Neogene sediments for realistic estimates of palaeo-water depth. The only way to create an accommodation space of 5 km to be further amplified with a factor 2 by the density difference by water and sediments is by tectonics. In the absence of evidence for extension and in line with the overall tectonic regime and the inferred rates of differential vertical motions with uplift in the Alborz and simultaneous subsidence in the South Caspian Basin, lithosphere folding appears to be a viable mechanism. The Volga probably did not deposit the sediments further upstream, because down flexing of the South Caspian created enough accommodation space to store the enormous amounts of sediments.
Both folding and transpression can generate mountain belts without a root such as the Alborz. Transpression could explain the case of the Turkish and Afghan orogens. Their location along the Tethyan suture in itself does not appear to play a key role.

6.5. Lithosphere folding and mantle dynamics

A mountain range, few kilometres high next to a 20 km deep basin is definitely anomalous in terms of differential topography. The substantial gravity anomalies with wavelengths of several hundreds of kilometres are characteristic for lithosphere scale deformation including an upper mantle component. It is exactly for this reason that various authors have emphasised the need for a contribution by lithosphere dynamics such as incipient subduction (e.g., Jackson et al., 2002). Others have presented evidence for recent slab break-off under the southeastern Zagros Mountains (e.g., Hafkenscheid et al., 2006; Molinaro et al., 2005) and beneath eastern Turkey and the Caucasus (Zor, 2008). As pointed out by Cloetingh et al. (2004), slab break-off will have important consequences on the regional stress field enhancing compressional deformation, eventually leading to folding in the overriding plate, whereas lithospheric folding itself can be the precursor for incipient subduction (Burov and Cloetingh, 2009, 2010). In this context, evidence for incipient subduction under the northern rim of the South Caspian Basin (Jackson et al., 2002) is particularly interesting. The models presented here show that the presence of a suture zone separating different lithospheric blocks strongly amplifies the deflection of the lithosphere leading to a deep synclinal depression flanked by more modest and narrower anticlines (Guest et al., 2007; Sokoutis et al., 2005). Our results also shed light on findings from recent studies of other segments of the Alpine–Himalayan collision zone, such as Iberia and northern Africa. Numerical modelling studies of the Cenozoic intraplate deformation of Iberia have demonstrated the important role of lithospheric heterogeneities in the location of intraplate deformation (Martín-Velázquez and De Vicente, 2012). Babault et al. (2008) and Chorbal et al. (2008) have presented evidence for late Cenozoic vertical motions in stable parts of NW-Africa with long-wavelength surface uplift patterns typical for lithospheric folding. The documented kilometre-scale differential topography with rapid subsidence of the Moroccan Atlantic margin and elevated young topography in the Atlas Mountains and adjacent areas of the NW African continent such as the Algerian Mediterranean margin, interpreted as sites of incipient subduction (Baes et al., 2011; Déverchère et al., 2005) are all occurring in a regime of present-day compression.

7. Conclusions

The intraplate deformation in western Central Asia is characterised by spatial and temporal patterns pointing to lithospheric folding as a major mode for generating the observed patterns in differential topography, lithosphere geometry and basin dynamics. The wavelengths of the observed lithosphere deformation are consistent with the inferences from thermo-mechanical models constructed for the lithosphere in western Central Asia. Analogue and numerical models of intraplate deformation induced by two simultaneously acting indenters, provide a self-consistent explanation for the observed interference of spatial patterns of lithosphere deformation in western Central Asia. Differences
in the convergence velocities of the Indian and Arabian indenters with respect to Eurasia and spatial variations in thermo-mechanical structure of the lithosphere west and east of the Kugitang–Tunka Line appear to of key importance.

Acknowledgements

Constructive reviews by D. van Hinsbergen and S. Schmalholz are acknowledged. Funding was provided by SNF, The Netherlands Research Centre for Integrated Solid Earth Sciences and ISTeP, UPMC. SC acknowledges ETH and UPMC for visiting professorships.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.tecto.2012.10.032.

References

Zubich, A.V., et al., 2010. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 29, TC6014.