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To understand how elasticity affects convective instability of viscoelastic fluids near the viscous limit, we
carried out numerical experiments of Rayleigh–Taylor instability of compressible viscoelastic fluids overlying
inviscid inelastic substrata (hence with infinite viscosity and elasticity ratios). Unlike incompressible viscous
fluids, for which growth becomes super-exponential when perturbations to the thickness of the unstable
layer grow to several tens of percent of the thickness, for compressible viscoelastic fluids, super-exponential
growth does not appear to develop at relatively low Deborah numbers, De=Δρgh/η∼10−6–10−4 (where Δρ is
the density difference between unstable layer and substratum, g is gravity, h is the thickness of the unstable
layer, and η is its viscosity) and for very high (N106) ratios of viscosity between layer and substratum, which
characterize large-scale geodynamic systems. This behavior differs from that of viscoelastic two-layer
systems with higher Deborah numbers (N10−4) and with smaller viscosity ratios (b104) because, instead of
accelerating the instability, as for incompressible media, elastic deformation may also retard growth in its
most rapid phase as the amplitude of flow increases. For small De (b10−3–10−4), retardation of growth
manifests itself in three ways: (1) while perturbations remain small, the commonly observed exponential
growth is delayed, (2) during exponential growth, the growth rate decreases monotonically with decreasing
De, and (3) when perturbations grow to large amplitude (N100%), the exponential growth rate decreases, due
to the formation of a compressible viscoelastic drop that has a distinguishable drop head and a stretched
filament. Values of De appropriate for Earth's mantle suggest that in most circumstances elasticity will not
affect the growth of lithospheric instabilities, but for high density contrasts (e.g. atypically warm lithosphere)
elasticity may retard their growth. By contrast, for relatively large Deborah numbers (N10−3), finite viscosity
ratios (b107), and small amplitudes of perturbations, elasticity accelerates growth of the instability.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The steep temperature gradient across the lithosphere makes its
lower part, if not the entire mantle lithosphere, convectively unstable.
The degree towhich growth of unstable perturbations to the thickness
or density structure of the lithosphere manifest themselves in
geologically observed phenomena remains controversial, but recent
studies suggest that the mantle lithosphere, including layers of
eclogitic lower crust, beneath both the Sierra Nevada of California
(Ducea and Saleeby, 1996, 1998; Jones et al., 2004) and the Altiplano of
the central Andes (Garzione et al., 2006; Ghosh et al., 2006) has been
removed in late Cenozoic time, and such a possibility seems likely in
other regions. It follows that to understand how lithosphere is
removed, we must quantify how boundary conditions and rheological
properties of the lithosphere affect growth rates of such an instability,

the lateral dimensions or characteristic wavelength of the fastest
growing perturbations, and the degree to which only part or all of the
mantle lithosphere could be removed. Toward that end, we explored
the role that elasticity plays in Rayleigh–Taylor instability.

We are motivated by the idea that convective removal of part or all
of themantle lithosphere could occur in a relatively short time of a few
million years (b10 Myr) (e.g., Houseman et al., 1981; Houseman and
Molnar, 1997). The characteristic time constant for diffusion of heat
into a slab many tens to 100 km thick is tens to hundreds of million
years. Thus, diffusion of heat is not likely to affect convective removal
at short timescales. This argument justifies analyzing Rayleigh–Taylor
instability, instead of full (i.e., Rayleigh–Bénard) convective instability.
Indeed, simple scaling arguments derived for Rayleigh–Taylor
instability with a variety of rheological conditions (e.g., Houseman
and Molnar, 1997) apply well to convective instability (Conrad and
Molnar, 1999).

Although we may ignore thermal diffusion, where viscosity is
large, the relaxation of elastic stresses in a viscoelastic lithosphere can
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occur with time scales comparable to that for growth of Rayleigh–
Taylor instability of viscous layers. If depth-averaged lithosphere
viscosity ranges between 5×1019 Pa s to 5×1022 Pa s, corresponding
average Maxwell or Kelvin–Voigt relaxation times, tM=η/μ, where η is
viscosity and μ(≅7×10 Pa s in the upper mantle) is the shear modulus,
are much less than 1 Myr. For more realistic non-Newtonian
constitutive laws, however, effective Newtonian viscosities may be
as large as 1024 Pa s or even higher in the upper, cold levels
(Tb1000 °C) of the mantle. Thus, Maxwell relaxation times can
approach 1 Myr, and, in some localized uppermost levels, 10 Myr.
Consequently, unlike purely viscous layers, a viscoelastic lithosphere
may “feel” previous deformation within geologically appropriate
periods of time. This requires consideration of viscoelastic behavior
rather than simply viscous behavior.

2. Theory

2.1. General considerations

Stresses in viscoelastic solids (modeled as Maxwell-type solids
with viscous and elastic shear components in series) act on three time
scales: (1) instantaneous elastic response controlled by the shear and
bulk moduli (U, B): (2) relaxation of shear stresses on the timescale
controlled by the Maxwell time tM and (3) creep of the viscous fluid
controlled by its dynamic viscosity U. The behavior of such solids is
effectively elastic until the incremental elastic strain is reduced to
levels smaller than the viscous strain. In the case of increasing strain
rate, as occurs during a growing instability, elastic strain may be
maintained at high levels that prevent the system from relaxing to
pure viscous flow. Brittle strength increases with depth/pressure.
Because of that and because of the viscous part of the constitutive law,
fracture need not occur at large strains. The development of an
instability is regulated by two characteristic times, the Maxwell time
defined above, and another that scales the exponential growth of
Rayleigh–Taylor instability of a purely viscous layer:

tf ¼
η

Δρgh
ð1Þ

Here the density of the unstable layer is greater than that in the
underlying halfspace by Δρ, the thickness of the layer is h, and g is
gravity (Table 1). The development of the instability thus depends on
the ratio of these two time scales:

De ¼ tM
tf

¼ Δρgh
μ

ð2Þ

De is a Deborah number, which scales the relaxation time of a fluid
process to a characteristic observation time (e.g., Reiner, 1964).

A general theory for viscoelastic Rayleigh–Taylor instability does
not seem to exist, in part because quite different behavior can develop
for a variety of limiting assumptions for constitutive relationships.
Moreover, as for Rayleigh–Taylor instability of a viscous fluid, the
temporal development of unstable growth of a viscoelastic fluid
changes as the amplitude of the perturbation grows to be comparable
and greater than the initial thickness of the unstable layer. Although
published theoretical analyses do not address the conditions that we
have considered, we review briefly published theories here.

In the general case, solutions of the equilibrium equations for time-
dependent deflection, W(t,x), of a viscous or viscoelastic layer are
presented as the sum of a damped (stable) part, decaying exponen-
tially with time, and an unstable part, growing exponentially with
time (e.g., Biot, 1965a,b; Biot and Odé, 1962, 1965; Odé, 1966; Burov et
al., 1993, Appendix: Nadai, 1963). The growth (or decay) rate p
depends on the boundary conditions, constitutive relations, wave-
length, and geometry of the structure, and 1/p either equals or
depends on the Maxwell time, tM (Biot, 1965a,b; Nadai, 1963).

For layered incompressible media with a finite, but not very large,
viscosity contrast between layers (viscosity ratios b102) and with no
contrast in elastic moduli, Biot (1965a,b), Biot and Odé (1962) and Odé
(1966) showed that small elastic shear moduli result in higher growth
rates of Rayleigh–Taylor instability than for larger shear moduli (see
also Appendix):

p ¼ Δρgh
ηr

¼ De
rtM

ð3aÞ

Here, rN0 is a non-dimensional scaling (it refers to a positive root of
the characteristic stability equation, Appendix A) that depends on the
boundary conditions and thewavelength of the perturbation. Biot (1965b)
suggested that for a limited viscosity contrast between the layer (η1) and
substratum(η2) andwhenvertical deflectionof the layer interface is small,
the viscosity η can be replaced by the effective viscosity ηeff=(η1η2)1/2.
Poliakovet al. (1993) showed that for aviscoelasticmediawithno contrast
in elasticmoduli or viscosity, the growth rate factor can be alsowritten as:

p ¼ Δρgh

η r− Δρgh
μ

� � ¼ Δρgh
η r−Deð Þ ð3bÞ

Table 1
List of symbols

B Bulk modulus
De=Δρgh/η= tf/tM Deborah number (dimensionless)
Dee=Deη1/(η2Δt') Effective Deborah number (for two viscous layers)
E Young's modulus
g Gravity (9.8 m s−2)
h Layer thickness
Δh Amplitude of perturbation to layer interface
Δh′=Δh/h Dimensionless amplitude of perturbation to layer interface
k=2π/λ Wavenumber
k′=kh Dimensionless wavenumber
L Length of filament connecting a sinking drop and

overlying layer
p=Δρgh/r η Growth rate of instability
P Pressure (static)
q′=p Δρgh/η Dimensionless growth rate of instability
r Dimensionless growth time factor (see definition of p) that

depends on boundary conditions and constitute relationships
of layers

t Time
t′= t/tf Dimensionless time
tf=η/Δρgh Time scale for growth of viscous instability
tM=η/μ Maxwell time
T Temperature
Δt Time step in numerical integration
Δt' Dimensionless time scale for growth rate of two-layered

viscoelastic medium with large De
u Displacement
w Rate of vertical movement of layer interface
W Vertical displacement of layer interface
x Horizontal position
Z′ Dimensionless depth of maximum descent of perturbation

to the layer interface
δi Kronecker delta
δp Dynamic pressure
εij Strain tensor
ε̇ Strain rate
η Dynamic viscosity
η1 Dynamic viscosity of upper layer
η2 Dynamic viscosity of substratum
ηeff=(η1η2)1/2 Effective dynamic viscosity for the case of two layers
λ Wavelength
μ Shear modulus (3×109–3×1012 Pa)
ν Poisson's ratio (0.25)
ρ Density (3.3×103 kg/m3)
Δρ Density difference between layer and substratum
σij Stress tensor
σMaxwell Maxwell stress (product of effective viscosity and strain rate)
τij Deviatoric tress tensor
ωij Rotation tensor
ψ Stream function
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It follows that a decrease in the shear modulus μ results in a higher
growth rate compared to a purely viscous casewith the same viscosity
η, for 0bDeb r. For the earth, however, as we show below, De≪1
(typically Deb10−3, and elasticity would sensibly increase the growth
rate only for r≪1. In most cases considered by Biot (1965a,b), r is on
the order of 1. Also, obviously, Eq. (3b) fails when the shear modulus
becomes≤Δρgh (De≥1) as p becomes infinite when De=1. This is also
physically impossible due the fact that Frenkel's limit prohibits
DeN0.1–0.2 (e.g., Kittel, 1986).

Faster growth of the instability for small elastic moduli can be
understood as follows. For a fixed strain increment, the smaller is
shear modulus, the smaller is the elastic restoring force. Because
Maxwell elastic and viscous shear stresses are equal, low elastic
moduli imply lower stresses for the same strain increments and the
same strain rates. Thus, the small elastic moduli lead to an effectively
weaker material. From the perspective of the viscous response of the
medium, a smaller elastic modulus calls for a smaller effective
viscosity ηapp, ηapp=τ ε̇=σMaxwell/ε,̇ compared to the intrinsic viscosity,
η, where σMaxwell is the Maxwell shear stress. For a given perturbation
to the base of anunstable layer, growthwill be fasterwhen the effective
viscosity is lower. It must be also noted that although decreasing the
shear modulus decreases the effective viscosity of the layer, it also
increases the relaxation time tM=η/μ. The first effect reduces time scale
for the effectively viscous instability, but the second effect increases
the time scale for the instability to develop, as we show below.

Poliakov et al. (1993) numerically validated Biot's (1965a,b), Biot
and Odé's (1962) and Odé's (1966) predictions for the cases of two
fluids with finite viscosity contrast (b104), zero elasticity contrast,
DeN10−4, and for perturbations with amplitudes on the order of h.
Kaus and Becker (2007) repeated and extended the numerical
experiments of Poliakov et al. (1993) to confirm their applicability
for large values of viscosity (ηN1021 Pa s) and large Deborah numbers
(DeN102), as well as for the cases when the lower layer is purely
viscous (elastic moduli in the lower layer are infinite).

Kaus and Becker (2007) offered a semi-analytical solution for the
case of a viscoelastic fluid (η1) over a viscous fluid (η2), based on the
assumption of the applicability of an “apparent” viscosity ηapp ¼ :evis:e

η1
η2

and an apparent Deborah number, Dee=Deη1/(η2Δt'), where Δt' is a
dimensionless time interval. Although they carried out elegant
analysis of this problem, we think that this approximation is of
limited value for lithospheric dynamics. Frenkel's limit (e.g., Kittel,
1986) on the strength of the atomic bonds requires that Δρgh be less
than approximately 0.25 μ. Consequently, for tectonically relevant
Δρgh on the order 100 MPa, De must be less than 4×108Pa s μ−1.

For example, for μ=30 GPa, Deb0.01. Kaus and Becker's analysis,
however, applies to cases with DeN10−2, as they show with numerical
experiments.

Poliakov et al. (1993) showed that for fluids with same elastic
moduli, the behavior is nearly viscous for an “effective” Dee≪1 and
for η1/η2b102, and nearly elastic for Dee≫1 and η1/η2N104. They did
not investigate cases Dee≪1 and η1/η2N104 or Dee≫1 and η1/
η2b102. Poliakov et al. (1993) concluded that for a fixed value of Dee,
the growth rate of the instability decreases with increasing η1/η2 or
with decreasing Dee. This result is controversial, however, because for
an infinite viscosity ratio Dee → ∞, which, according to Biot's theory,
implies that the system should behave elastically and grow fastest.
Indeed, for a finite viscosity contrast, with a viscoelastic fluid overlying
a viscous fluid, Kaus and Becker (2007) found that the growth rate
increases with increasing viscosity ratio. The case with Dee → ∞ thus
presents a particular situation, because the effective Deborah number
Dee does not directly depend on De, and thus on the elastic properties,
but variation of De may indirectly influence on the growth rate.

Finally, but importantly, Poliakov et al. (1993) have indicated that
elastic compressibility may also have an important effect on the
growth rate of instabilities by demonstrating that the accelerating
effect of elasticity increases with decreasing Poisson's ratio.

In summary, depending on the elastic and viscous structure of the
medium, elastic deformation can either accelerate or delay the growth
of Rayleigh–Taylor instability. For small values of De appropriate
for the lithosphere–asthenosphere system, however, finite elasticity
seems unlikely to accelerate growth, and our goal is to examine
quantitatively how elasticity does affect such growth.

2.2. Compressibility and large-amplitude viscoelastic drop theory

For large vertical deflections (WNh), Biot's theory does not apply,
and the problem of gravitational instabilities in layered media becomes
that for a viscoelastic drop (or diapir in the case of an inverted structure)
and its filament translating through a viscous (e.g., Whitehead and
Luther,1975) or viscoelastic environment (e.g., Bird et al., 1987) (Fig.1A).
Indeed, in real fluids, as the amplitude of the perturbation grows to
approximately one layer thickness, the slope of the bottom of the
deflected layer may increase to become subvertical, and a drop head
forms (Fig. 1A). At micro-scales, the development of viscous drops is
largely controlled by surface tension, which may cause the instability
to stall, but is of no importance at the macro-scale. Yet, in case of
viscoelastic fluids, tensional stresses and buoyancy forces at the surface
of the drop contribute to a damping of the instability and somehow
play a similar role as surface tension (Appendix A, Eqs. (A3), (A5), and
(A6)). The drop head is connected to the horizontal source layer by a
filament, with length LNh, that stretches progressively and becomes
thinner than both the source layer and the diameter of the drop head.
In this case, the growth rate of the instability is controlled by stretching
rate of the filament, which depends on the weight of the drop and the
rate of the flow from the source layer that feeds the filament.

A filament can be stretched over many layer thicknesses after the
vertical deflectionWexceeds the initial layer thickness,h (e.g., Smolka and
Belmonte, 2003; Smolka et al., 2004). Unlike that in incompressible
Newtonianfluids, downwardstretchingof aviscoelasticfilament results in
vertical dilatation and horizontal contraction and creates a dynamic
restoring force thatmust be relaxedbefore thedrop candescend.As result,
a viscoelastic drop slows downwhen the elastic restoring force becomes
sufficiently large to compete with the weight of the drop and filament.

In Appendix B, we review briefly an analysis given by Smolka and
Belmonte (2003), but here we note an aspect relevant to our work.
Compressibility of the viscoelastic fluid can play a key role in finite
amplitude growth, because with greater compressibility (relatively
small elastic moduli), the diameter of the filament connecting the
drop to the remaining fluid can be small, which makes the weight of
the drop plus fluid smaller than in incompressible fluids. Thus, during
finite amplitude growth, large compressibility and associated less
massive drops and filaments will lead to slower growth than for
smaller compressibility (larger elastic moduli).

3. Basic equations and assumptions

As shown above, analytical approaches are limited, which justifies
a numerical approach. With that goal, we consider the general static
equation of equilibrium that conserves momentum:

j � σ ij −ρgδi ¼ 0 ð4aÞ

Here σij is the stress tensor, ρ(x, y, z) is density, g is gravity, and δi is
the Kronecker delta (meant here as a unit vector in vertical direction).
In our analysis, the body force (second term) arises from a constant
density contrast Δρ between the upper layer (lithosphere) and
underlying fluid (asthenosphere). Thus, we may reduce Eq. (4a) to:

j � σ ij −Δρgδi ¼ 0 ð4bÞ

Assuming a negative sign for static pressure, we can present σij as:

σ ij ¼ τij − P þ δp ð5Þ
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where τij is the deviatoric stress, P is static pressure, which depends on
depth, and δp is the dynamic pressure that arises due to deformation.

The relations (1–3) refer to idealized incompressible Maxwell
fluids, whereas real rocks are at least elastically compressible
(Poisson's ratios ∼ 0.25). To approximate viscoelasticity better, we
use a linear elastically compressible solid with Maxwell shear term,
defined by the following constitutive relationships:

σ ij ¼ τij þ σ Iδij

σ I ¼ 1
3
σ ii þ Beii

τij ¼ σ ij −
1
3
σ ijδij

@τij
@t

¼ 2 μ :edij −
τij
2tM

� �

8>>>>>>><
>>>>>>>:

ð6Þ

where εij is the strain tensor, “M” means “Maxwell”, “d” means
deviatoric, B is a finite bulk modulus, σI is the isotropic stress, or total
pressure, so that the fluid is elastically compressible, and we use the
Einstein summation convention for repeated subscripts. The bulk
viscosity of lithospheric rocks is considered to be negligibly small, in
the absence of experimental data that can prove opposite.

We do not solve Eqs. (4a)–(6) analytically, but instead we use
a numerical approach based on the viscoelastic-plastic code FLAC-
Para(o)voz (Fast Lagrangian Analysis of Continua) (Cundall, 1989;
Poliakov et al., 1993). Para(o)voz employs a hybrid Lagrangian (finite
difference-finite volume element) numerical scheme, in which the
coordinate frame is Cartesian 2D, but stress/strain relations are com-
puted with a full 3D formulation (see details in Burov and Guillou-
Frottier, 2005). The code is based on a large-strain, fully explicit time-
marching scheme. Locally it solves the full Newtonian equations of
motion in the continuum mechanics approximation Eq. (4a):

@τij
@t

¼ 2 μ :edij −
τij
2tM

� �

σ I ¼ 1
3
σold

ii þ Beii

σ ij ¼ σold
ij þ @τij

@t
Δt þ @σ I

@t
Δt

ωij ¼
1
2

@:ui

@xj
−
@:uj

@xi

� �
σ corrected

ij ¼ σ ij þ ωikσkj −σ ikωkj
� 	

Δt

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

Fig. 1. A) Sequence of different stages of development of a Rayleigh–Taylor instability in a viscoelastic layer of thickness h overlying an inviscid fluid of lower density. (These plots are
based on real numerical run, which is used here for illustration only.)When the amplitudeWof the instability is small (Wbh), Biot's linear theory applies. At later stages (WNh), Biot's
theory is not applicable and drop theory applies. At this moment, the elastic restoring force due to stretching of drop filament starts to play an important role in the development of
the instability, and descent of the dropmay stall at some point. B) Numerical setup for experiments. Case a): Main setupwith a viscoelastic layer on top of inviscid fluid. The initial grid
is composed of 200×20 rectangular elements containing 800×80 overlapping sub-triangles that represent a 100-km thick viscoelastic mantle lithosphere layer with elastic shear
modulus μ, viscosity η, and density ρ (see insert showing a rectangular element subdivided onto triangles A,B,C,D). The bottom of the lithosphere is initially perturbed with a
harmonic perturbation of wavelength λ and amplitude Δh (5 km). The bottom boundary condition is Winkler's hydrostatic condition that simulates an underlying inviscid fluid of
density ρ−Δρ. At lateral edges, reflecting boundary conditions are imposed. The upper boundary condition was one of a free upper surface (stress free), no vertical slip but free
horizontal slip (slippery top), or a rigid top. To consider a range of wavelengths, the width of the box varied from 250 km to 2000 km. Case b): a viscoelastic layer on top of less dense
viscoelastic fluid. The second setup was used only for benchmarking previous results of Poliakov et al. (1993).
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where “old” means stress value from the previous time step, Δt is the
time step, “corrected” refers to stress tensor corrected for large strain
deformation, u is displacement and overdot means time derivative.
Solutions of the equations of motion provide velocities at mesh points
used for computation of strains in the elements. These strains are then
used in Eq. (6) (or Eq. (7)) to calculate stresses within elements, and
the equivalent forces are used to compute increments of displacement
(velocities) for the next time step. Para(o)voz uses all components
of stress σij, which allows for the computation of total pressure σ I .
Para(o)voz uses an explicit dynamic scheme. When in quasi-static
mode, the inertial terms are artificially damped to accelerate com-
putations, whose criterion is determined by the value of the numerical
Reynolds number (ratio of inertial forces to viscous forces) that should
be kept below 10−2 (Poliakov et al., 1993). This condition was res-
pected during the numerical experiments by automatic adjustment of
the time step.

The numerical mesh used in all calculations consists of 200×20
quadrilateral elements (Fig. 1B) containing 200×20×4 overlapping
sub-triangles (4 triangles per element) for the upper layer. The use of
overlapping triangular elements minimizes meshlocking, and thus
artificial overpressure. The reaction of the underlying inviscid
substratum of density (ρ−Δρ ) is reproduced by Winkler's boundary
condition: a hydrostatic stress equal to ΔρgW , where W is vertical
deflection of the bottom of the layer. We used reflecting lateral
boundary conditions (zero horizontal velocity and zero normal stress).
As discussed below, we carried out experiments with three different
boundary conditions for the top surface. To analyze results and to
compare with others, we non-dimensionalize (4)–(6) as follows. We
scale distances to the thickness of the unstable layer, h:

x; zð Þ ¼ h xV; zVð Þ ð8aÞ
Although, we might scale time using the Maxwell time, tM=η/μ ,

instead we use characteristic flow time, which is inverse of Biot's
(1965a,b) growth rate factor pb:

tf ¼
r
pb

¼ η=Δρgh; ð8bÞ

because tf scales as the growth time for the Rayleigh–Taylor instability
of viscous fluids (e.g., Chandrasekhar, 1961) and is commonly used in
related problems. Thus, we non-dimensionalize time by:

t ¼ tf tV ð8cÞ

Following the same tradition, we scale stresses and pressure by
Δρgh:

σ ij; τij; δp
� 	 ¼ Δρgh σ Vij; τVij; δpV

� 	 ð8dÞ

In terms of dimensionless quantities, the governing equations
become:

jV� σ Vij −δj ¼ 0 ð9Þ

with

@eij
@tV

¼ Δρgh
2μ

@τVij
@tV

þ
τVij
2

¼ 1
2

De
@τVij
@tV

þ τVij

 !
ð10Þ

where the dimensionless Deborah number, De, is defined in Eq. (2).
Finally, we write for the dilatation:

eii ¼
Δρgh
B

δpV ð11Þ

In all runs, we kept Poisson's ratio constant (0.25), and we discuss
this assumption no further here. This does not mean that flow is
independent of Poisson's ratio (Poliakov et al., 1993), but reflects the
observation that Poisson's ratio does not vary significantly within the
lower lithosphere.

We assume (and analyze) harmonic perturbations to the base of
the layer (Fig. 1B):

Δh cos kx; or ΔhVcos kVxV ð12Þ
where k=2π λ is wavenumber, and λ is wavelength. Thus, we restrict
attention to two dimensions. Moreover, we assume that the lower
layer is inviscid and inelastic, so as to mimic a large viscosity contrast
between the unstable layer and the underlying layer. To test whether
numerical instabilities might occur, we used widths of layers that
were twice the wavelength of the perturbation, so that with reflecting
side boundary conditions, downwelling sheets developed on the
edges of the layer and in the middle. In all cases reported, we found
no discernable difference between positions of the downwelling
sheets on the margins and in the center.

Although we describe results with non-dimensional quantities, all
runs were made using dimensionalized quantities. In all cases,
h=100 km, g=9.8 m/s2, ρ=3.3×103 kg/m3, and Δρ=100 kg/m3. Fig. 2
shows the reference experiment for the case with viscosity of
5×1019 Pa s, μ=30 GPa and with a slippery top upper boundary
condition. We then tested the influence of three different top
boundary conditions (Fig. 3): (1) no slip and no vertical component
of velocity (rigid top), (2) no shear stress and hence free horizontal
slip, but no vertical movement (slippery top), and (3) for runs only
with λ′=5, neither shear nor normal stress on the top boundary and
hence free vertical and horizontal components of velocity and
displacement (stress-free top). As shown in Figs. 2 and 3, the initially
harmonic perturbation rapidly distorts into narrow downwelling
drop-like plumes and broad regions of thinning. Moreover, as shown
in Fig. 3, a slippery-top or stress-free boundary allows much more
horizontal flow and thus greater thinning of the layer between
downwelling sheets, and more rapid growth of the instability, than a
rigid top. Because of the similarity of flow for slippery-top or stress-free
boundaries, we discuss runs with stress-free top boundary no further.

Fig. 2. Examples of an experimental run for the case with viscosity of 5×1019 Pa s and
with a slippery top upper boundary condition, sampled at different times.
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Fig. 3. Cross sections of the layer after approximately the same elapsed time of ∼510,000 years (or dimensionless times of ∼32), for runs with different top boundary conditions: a slippery top (left), free slip at the top (center), and a rigid top.
There is no significant difference between the results for the first two conditions, but a rigid top boundary condition imposes slower growth rate.
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To test themethod used to solve the equations, we then ran a set of
experiments (Fig. 4A) to compare with the previous results of Poliakov
et al. (1993) for two-layer system with small viscosity contrast. We
replaced the inviscid substratum and Winkler's boundary condition
with a second viscoelastic layer of thickness 3h, with the same elastic
parameters as in the overlying layer, and with density (ρ−Δρ ). These
calculations match those of Poliakov et al. (1993). In particular, they
confirm that for amplitudes of instability bh, limited viscosity ratios
b104, and relatively high De≥10−3, decreasing De results in higher
growth rate than in case of pure viscous instability. In addition, these
experiments show that for these conditions, the maximum accelerat-
ing effect of elasticity is reached for the smallest viscosity ratios, but
the growth rate also decreases with increasing viscosity contrast so
that the accelerating effect of elasticity becomes small for viscosity
ratios N106. As predicted, the experiments of Fig. 4A confirm that in
case when the surrounding fluid has a finite viscosity and same elastic
modulus as the “drop,” the stretching of the unstable layer is resisted
by the surrounding fluid, and the behavior of the instability does not
differ much from that predicted from Biot's theory.

In the next series of experiments we tested the influence of
elasticity and viscosity on the growth rate of instability of a visco-
elastic layer overlying an inviscid substratum with no elasticity (and
hence infinite viscosity and elasticity contrasts). As follows from
Eq. (3b) and confirmed by Poliakov et al. (1993) and the results shown
in Fig. 4A, for sufficiently large De, for smaller elastic moduli, growth
rates should increase. The degree to which elasticity, quantified byDe,
accelerates growth, however, depends on the boundary conditions
which are quantified by value of the dimensionless constant r in (3b).
To examine the effect of elasticity, we explored four values of μ, the
shear modulus in the layer: 3×109 Pa, 3×1010 Pa, 3×1011 Pa,
and 3×1012 Pa, for which values of De were 3.27×10−2, 3.27×10−3,
3.27×10−4, and 3.27×10−5. We carried out suites of runs with η=
5×10n, with n=18, 19, 20, and 21 (Fig. 4B). In nearly all runs, we
assumed for amplitudes of initial perturbation Δh=5 km (Δh′=0.05),
but we also used Δh=1 km (Δh′=0.01) to examine whether the
magnitude of the initial perturbation affected the development of the
instability. It did not. We explored a spectrum of wavelengths of
perturbations: 125, 187.5, 250, 375, 500, and 1000 km (λ′=1.25, 1.875,
2.5, 3.75, 5, and 10) corresponding to k′=kh=5.0265, 3.3510, 2.5133,
1.6755, 1.2566, and 0.62830, respectively. Thus, with as many as four
values of η, for most wavenumbers of perturbation and each value of
De, we obtained 4 values of the dimensionless growth rate.

4. Qualitative description of results and heuristic interpretation

With a small perturbation to the base of the layer, the thickened
region sinks, and the thinned region thins (Figs. 2 and 3). The pattern
of growth differs markedly for different values of De, which we
implemented using different values of the shear modulus.

We may examine that growth by plotting the logarithm of the
maximum (dimensionless) downward displacement of the sinking
sheet (log10Z′) versus (dimensionless) time t′ (Fig. 4B). Analysis of
linear stability (e.g., Chandrasekhar, 1961; Conrad and Molnar, 1997)
shows that for viscous layer, growth is exponential, and hence a plot
like that in Fig. 4B should yield a straight line, at least until non-linear
interactions affect flow. Although linear stability applies only to small
perturbations and small strains, numerical experiments using viscous
layers confirm such a pattern until perturbations to the thickness of the
layer exceed at least 10% of the layer thickness and asmuch as 100% for
the fastest growing wavelength (e.g., Houseman and Molnar, 1997).

For purely viscous layers, growth accelerates to become super-
exponential, and theoretically the sinking sheet would drop to an
infinite depth in a finite time (e.g., Canright and Morris, 1993). Super-
exponential growth is also expected in viscoelastic fluids with finite
viscosity ratios, where increasing De would result in faster growth
rates of instability, for amplitudes b100% of the layer thickness (Biot,
1965a,b). This growth to infinite depth, however, should not occur for
a viscoelastic fluid, because the rapidly increasing strain rate should
generate increasing elastic resistance to deformation, which marks
the transition from “Biot's”mode to the “drop”mode (Fig. 4C). Indeed,
Fig. 4C demonstrates that for large amplitudes of the deflected layer,
WNh, there is a relative increase of the absolute value of the deviatoric
stress component σdyy. The growth of σdyy reflects the effective
stretching of the drop filament.

Finally, Fig. 4D compares the case of μ=λ=30 GPa with the case
where μ and λ are 100 times higher, for the same amplitude of the
instability. As can be seen, the geometry of the drop head and filament
are radically different, with a much thinner filament and smaller drop
head in case of smaller elastic modules (See Appendix B). This explains
why the growth rate is smaller for smaller elastic modules (smaller
drop head→ smaller driving force, thinner filament→ higher internal
shear and greater resistance to flow, as well as a smaller rate that fluid
is drawn from the source layer). This figure also shows how the
descent of the drop should eventually stall, as the source layer
becomes vanishingly thin.

Fig. 4. A) Test of the numerical model on the previously treated case (Fig. 1B, case b) of two viscoelastic fluids with no or small viscosity contrast and identical elastic properties. It
can be seen that in this case, the elasticity accelerates the growth of the instability in the same way as predicted by Poliakov et al. (1993) for finite viscosity contrasts and Biot
(1965a,b) theory. B) Time series of displacements of downwelling sheets versus time. The logarithm of the maximum displacement of the downgoing sheet, normalized by layer
thickness, log10 Z′= log10 (Z/d), versus dimensionless time, t′= t Δρgh/η; thus exponential growth should plot as a straight line. In all cases, k′=1.257, or λ′=5.0. Note that for large
values of the Deborah number De=Δρgh/μ, corresponding to small values of elastic constants, initial growth is not exponential, but for small values of De, it is exponential for
nearly the entire development of the instability. In all cases, at large descent distance, growth decelerates from exponential. Grey zone corresponds to exponential growth.
C) Stress distributions for the experiments shown in Fig. 2. Transition from “Biot's” regime (bottom) to the “drop” regime is characterized by amplitudes of the deflected layer, W,
exceeding h, and by relative increase of tensional component of the deviatoric stress σd

yy. The increase in σd
y refers to effective stretching of the drop filament. In this

experiment, the deviatory stresses remain largely smaller than Δρgh. D) Comparison of the case with “normal” elastic modules μ=λ=30 GPa (left, experiment of Fig. 2) and 100
times higher elastic modules μ= =3000 GPa. Note higher growth rate in the latter case and radically different geometry of the drop head, filament and source layer.
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Wemay conclude that the inclusion of finite elasticity, to make the
constitutive law viscoelastic, alters growth in two obvious ways, by
delaying the onset of exponential growth and by altering the
exponential growth rate so that super-exponential growth is virtually
eliminated. For a viscoelastic layer, the growth of the instability,
particularly for a small shear modulus, or large De, is delayed, so
that exponential growth does not occur immediately. After relaxation
(tM=η/μ) of the initial elastically induced stress, the growth of the
developing instability may be retarded if elastic deformation (low μ
or high De) continues to accommodate a significant fraction of the
strain.

After a period of exponential growth, the growth of perturbations
to viscous layers accelerates faster than exponential growth, but for
viscoelasticity, the rate of exponential growth either stays nearly
constant or in some cases decreases. This occurs because at this stage
elastic strain in the filament becomes so large that the increasing
elastic resistance retards deformation. We could not run calculations
to times when a terminal speed was reached, but the deviation from
exponential growth suggests that such a terminal speed might be
approached (Fig. 4B). For large De, and hence small shear modulus
with other parameters held fixed, elastic strain is large, and the
deviation from exponential growth occurs at relatively small descent
of the sheet. Thus, for large De, the duration of exponential growth is
reduced both in the initial and final stages of growth. A widely
observed example of this effect at small scale is a stalling of the growth
of water drops due to quasi-elastic surface tension. A similar effect is
observed in laboratory experiments of silicone drops that are devoid
of surface tension but obey a viscoelastic rheology: initial retardation
in the development of the instability, followed by acceleration (as in
Biot's mode), and then a reduction of the growth ratewhen the layer is
stretched and thinned, and its effective viscosity starts to increase
giving rise to the drop mode (e.g., Smolka and Belmonte, 2003:
Appendix B).

5. Results

To quantify the development of the instability, we measured
growth rates, slopes of plots log10 Z′ versus t′, for the intervals over
which growth is exponential (Fig. 4B). For small De, corresponding to
large elastic moduli, growth is exponential for essentially the entire
duration of runs, until the downwelling plumes reach 3–5 times the
layer thickness (Fig. 4B). For large De, when elasticity starts to play
role, however, exponential growth both is slower than for small De
and applies for a smaller range of depths of descent. Note that by
estimating a growth rate as we do, we obtain the largest average value
of the growth rate, for we fit the linear portion of log10 Z′ versus t′
through the point of inflection in such a plot. Because of the initial
slow growth for runs with the largest value of De, estimated growth
rates are more uncertain than for runs with smaller values of De, but
as shown in the example in Fig. 5, the value of q′ for large De cannot be
as large as that for small De.

As expected, q′ depends not only on De, but also on dimensionless
wavenumber, k′ (Fig. 5). For large wavenumber, growth rates for both
free-slip and no-slip top boundaries decrease with increasing wave
number, as is the case for viscous layers. For k′=3.35 or 5.03, only for
the largest values of De are growth rates significantly different from
those of a viscous layer (e.g., Conrad andMolnar, 1997; Houseman and
Molnar, 1997).

For small k′, growth rates for viscous layers are small for rigid top
boundaries, but approach a maximum for free slip as k′ → 0. For
viscoelastic layers, growth rates for relatively large values of De differ
little from those for a viscous layer, but again growth is slower for
smaller values of De (Fig. 5). Perhaps most interesting is the case of a
free top, for which growth rates for large De are two to three times
smaller than those for small De. In particular, for the largest value of
De that we considered (3.27×10−2), growth rates for small k′ for

rigid and free top boundaries differ little. Thus, for a wide range of
values of De, the effect of the elastic component of viscoelasticity is
small, but for sufficiently compliant material, scaled by the driving
force due to buoyancy, the elastic component of strain can retard
growth significantly and suppress growth of long-wavelength pertur-
bations. This conclusion applies to the case of infinite viscosity
contrasts and large deflection of the layer, as elasticity accelerates the
growth of the instability otherwise.

6. Discussion and conclusions

Most tectonically relevant scenarios refer to viscoelastic behavior
with Deb10−4, or at most 10−3. The effect of elasticity on the growth
rate of Rayleigh–Taylor instability in such media is relatively small.
The behavior of elastically compressible viscoelastic fluids with
relatively low De (b10−3) and very high material contrasts, conditions
to which Biot's theory for incompressible viscoelastic fluids does not
apply, may appear at tectonic scales, specifically for large deflections
of an unstable layer. For layered media with very high viscosity
and relaxation time ratios (N106), unlike the case of small ratios
(∼102–103), the inclusion of elasticity in a compressible formulation of
the constitutive law relating stress to strain and strain rate can retard

Fig. 5. Plots of dimensionless growth rates, q′, versus dimensionless wave numbers, k′, for
different values of elastic constants, or different values ofDe, for no-slip top boundaries (a)
and free-slip top boundaries (b). The solid lines show the theoretical predictions for the
wave number dependence in a purely viscous layer with constant properties overlying an
inviscid fluid (e.g., Conrad and Molnar, 1997). Note that viscoelastic layers follow the
theoretical curve for large wave numbers, but grow faster at small wave numbers. Black
symbols indicate runs with free slip permitted on the top boundary.
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the initial and terminal growth of Rayleigh–Taylor instability, and
therefore of convective instability. The effect of large deflection is
similar to that of higher Poisson's ratio for small-amplitude insta-
bilities, with the difference that the compressibility of the viscoe-
lastic drop results in slower growth of instability for smaller shear
modulus. If the unstable layer is underlain by a fluid with com-
parable viscosity and elastic moduli (Fig. 4A), however, that under-
lying fluid retards the stretching of the drop filament, and the
behavior of the instability does not much differ from that predicted
from Biot's theory.

For relatively stiff layers, the delay before exponential growth
begins is short, and initial growth rates agree closely with those for
purely viscous layers. For especially compliant layers, however,
initially a perturbation to the thickness of the layer grows slowly, not
exponentially: then when growth does increase exponentially with
time it does so with a growth rate that is smaller than that for a
purely viscous layer. The most marked difference between elastically
stiff and compliant layers occurs for stress-free or slippery top
boundaries: for viscous layers growth is fastest for perturbations
with wavelengths that are long compared to the thickness of the
layer, but for compliant layers, elasticity retards growth at long
wavelengths, so that the layer behaves as if movement of its top
surface were inhibited.

The calculations summarized above were made with the goal of
spanning the likely range of parameters applicable to the earth. The
applicable density anomalies Δρ are due to temperature anomalies ΔT
in the mantle perhaps augmented by dense eclogitic lower crust. With
a temperature at the Moho of 650 °C, for instance, and that for the
asthenosphere of 1350 °C, a sensible maximum difference is 700 °C.
The density anomaly due to thermal differences is given byΔρ=ραΔT ,
where ρ≈3.3×103 kg m−3 is the background density of the mantle and
α=3×10−5 °C−1 is the coefficient of thermal expansion. Thus the
maximum density anomaly will be 70 kg m−3, and because the
temperature gradient through the mantle lithosphere is essentially
linear, the average density difference would be 35 kg m−3. With a
typical shear modulus of 7×1010 Pa for the mantle and assuming
a layer thickness of 100 km, we obtain for mantle lithosphere
De=5×10−4 , which is relatively small among the values that we
examined. Thus, we conclude that although elasticity will retard the
growth of Rayleigh–Taylor and probably convective instability, the
retarding effect should be small for normal lithosphere associated
with large density contrasts (h=100 km, Δρ=35 kg m−3) and with an
average viscosity b1024 Pa s. This inference would not be the case if De
were larger, for instance by 3 to 10 times, due either to thicker
lithosphere or to larger density anomalies.

Archean lithosphere, which can be as thick as 250 km (or perhaps
more) might be a candidate for large De, but the large lithospheric
thickness is compensated by its relatively low density (e.g. Jordan,
1975). Thus, expected values of De for such regions ought not be much
larger than 5×10−4.

Elasticity seems likely to have its greatest effect in regions where
normal lithosphere has thickened and where a thick eclogitic lower
crust contributes to the density anomaly. For instance, Garzione et al.
(2006) and Ghosh et al. (2006) showed that 3±0.5 km of rapid surface
uplift of the Altiplano and Central Andes between 10 and 6 Ma
requires removal of eclogite-rich mantle lithosphere. Garzione et al.
(2006) estimated that Δρgh=8.1×107 Pa, and therefore De=3×10−3 .
Thus, elasticity could have helped stabilize lithosphere in that region
and later retarded removal of it.

Finally, it may be suggested that in case of finite material con-
trasts (e.g. viscosity ratiosb105), the development of the instability
may be multi-stage: following Biot's theory in the initial stages
(elasticity accelerates the growth rate) and then developing into the
drop mode at the later stages, so that elasticity retards further
growth. For small material contrasts, Biot's mode will likely prevail
in most situations.
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Appendix A. Small-amplitude instabilities at low material
contrasts: Biot's theory and other approximations

A.1. Biot's theory for small amplitudes

Biot (1965a,b), Biot and Odé (1962, 1965) and Odé (1966) used an
analytical shear flow approximation, in which there are two or more
“thick” layers of contrasting finite viscosity. The term “thick” here means
that the upper and lower boundaries of the layer cannot be considered as
parallel, and that the wavelength of the layer deflection cannot be
considered large compared to its thickness. Biot's theory is based on an
approximation forquasi-static incompressible viscousflowwith constant.

Newtonian viscosity with in each layer, for which the Navier–
Stokes equation can be written as:

ρ
Du
Dt

¼ ρgi−
@Pd
@xi

þ η
@

@xj
:
e ij−

1
3
:
e iiδij

� �
with :

e ii ¼ 0 and
Du
Dt

¼ 0 ðA1Þ

σ ij ¼ −Pδij þ η
@ui

@xj
þ @uj

@xi

� �
: ðA2Þ

Under this approximation, from continuity and incompressibility,
the absolute values of normal stresses within each layer must be equal
to each other:

:
exx þ :

eyy ¼ 0Z σ xx ¼ −σyy ∼ η
@w
@y

ðA3Þ

Pressure is eliminated by differentiation of the flow equation (A1),
which is reduced to a fourth order (bi-harmonic) equation of the
stream function ψ ui ¼ @ψ

@xj

� �
; the unknown variable. The fourth-order

characteristic equation has four roots, some of which, depending on
the boundary and initial conditions and geometry of the problem,may
be positive (growing) or negative (decaying). For positive roots,
assuming a two-layered fluid system with no elasticity contrast, one
obtains Eq. (3b) (Poliakov et al., 1993). Biot and Odé's (1962, 1965) and
Odé's (1966) theory also treats only the positive roots (growing
solution) of the problem.

Under this assumption, they showed that the geometry and
boundary conditions have a crucial impact on the growth rate of
instability. They considered a free-surface or rigid- surface at the top
of a viscous layer of thickness h1, viscosity η1, and density ρ1 overlying
another viscous layer of finite thickness h2, viscosity, η2, and density
ρ2, for which the growth factor p depends on all of h1, h2, η1, and η2:

p ¼ Δρgh2

η1r
ðA4Þ

The dependence on h1 and η2 is defined via the constants a, b, c in
the characteristic stability equation ar2+br+c=0. In particular, the
minimal value of r decreases with increasing viscosity ratio: rmin≈8–
12 for viscosity ratio 1, and rmin≈0–3 for viscosity ratio of 103. Varying
h2 has an inverse effect, since for a vertically infinite lower layer, and a
free surface on the upper layer, r approaches infinity (but p remains
finite). We note that the solutions of Biot (1965a,b) and Poliakov et al.
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(1993) may not hold for Deborah numbers DeN1 (see Eq. (3b)) and for
high viscosity ratios (N103), because this could lead to infinite growth
rate. Indeed, Biot's (1965a,b; Kaus and Becker, 2007; Poliakov et al.,
1993) solutions do not apply to large amplitudes and to large elasti-
city or viscosity contrasts, where viscoelastic drop theory becomes
more applicable. In particular, Biot (1965a,b) has assumed that, by
the correspondence principle, the effective viscosity of a layered
media equals ηeff=(η1η2)1/2. This assumption cannot apply to the case
when η2 is zero (infinite viscosity ratio), as the predicted growth rate
would be zero for any layer overlying an inviscid fluid, which is
incorrect.

A.2. Layer approximations

Biot's theory assumes that the viscoelastic stress cannot exceed
Δρgh. Bending stresses in the deforming layer, however, may become
significantly larger than Δρgh, and may provoke various kinds of
instabilities in a viscoelastic medium. For example, for a thin, purely
viscous layer, the bending deviatoric stress σd

xx(y) and maximum
bending stress σd

xxmax are (Nadai, 1963):

σd
xx yð Þ ¼ −2η y

@3W
@x2@t

Zσd
xxmax ¼ −ηh

@3W
@x2@t

¼ −ηh
@2w
@x2

ðA5Þ

For a purely elastic layer, themaximum bending stress (Timoshenko
and Young, 1968) is:

σd
xx yð Þ ¼ E

1−m2ð Þ y
@2W
@x2

Zσd
xxmax

E
1−m2ð Þ

h
2
@2W
@x2

ðA6Þ

where W is the vertical deflection of the layer, y is vertical distance
from the middle of the layer, w is the deflection rate, E is Young's
modulus, and ν is Poisson's ratio. Thus, for typical geological strain
rates, ε̇, of 10−13–10−15 s−1 and viscosities of 1018–1021 Pa s, viscous
bending stresses may reach 108–1011 Pa, which are larger than simple
viscous flow stresses ηε̇ (ηε̇ ∼ 103–108 Pa). The scale for the applied
stress due to gravity, Δρgh, is on the order of 5×108 Pa and smaller
than the maximum elastically supported bending stress. Indeed, in
most cases related to the Earth: 1

10hVj @
2W
@x2 jV 1

3h (e.g., Watts and Burov,
2003). Consequently, for h∼100 km, the maximum elastic bending
stress is on the order of 108–1010 Pa and thus may exceed Δρgh by
several times.

Nadai (1963) considered relaxation under normal loading/unload-
ing and horizontal compression of a single thin viscoelastic layer with
a free upper surface over an inviscid layer with no elastic strength. He
decomposed the total vertical deflection of the layer, W, into a
reversible, or elastic deflection, We, and a permanent, or viscous
deflection Wv such that W=We+Wv. For the decaying part of the
solution corresponding to static flexure (negative roots of the
characteristic equation), Nadai (1963) obtained:

Wv ¼ e−t=tM

tM
∫ t

0
Wet=tM dt

We ¼ W−Wv

or:

w ¼ We=tM

WV ¼ WV t ¼ 0ð Þ þ 1
tM
∫

t

0
Wedt

ðA7bÞ

For a stable layer (Nadai, 1963), the deflection rate w caused by

normal load P is proportional to w∼ P
Δρg ∫

∞
0 b λð Þ c λð Þ tM

k λð ÞD4þm λð Þð Þ −1
� �

e−t=tM þ 1
� �

cos λxdλwhereD ¼ Eh3=12 1−υ2
� 	

is elastic contribution to the flexural
rigidity, and b, c, k, and m depend on layer geometry, boundary
conditions, andwavelength, λ. Nadai (1963) showed that the application
of a finite normal load to a viscoelastic layer first produces an elastic

deflection, which eventually grows into a finite permanent viscous
deflection. A dense viscous layer, however, becomes gravitationally
unstable with an initial growth rate proportional to et/t0. For an unstable
viscoelastic layer, the deflection ratew is obtained from the positive root
of the characteristic equation and contains a term that scales as

tM
k λð ÞD4 −1
� �

et=tM where the parameter k does not depend on material
properties.

According to this solution, a decrease in E may increase w via
increasing pre-exponential term, but may also decrease it via
decreasing the exponential term.

Appendix B. Drop theory of a viscoelastic fluid

Smolka and Belmonte (2003; Smolka et al., 2004) described and
analyzed growth of a drop and connecting filament, which lengthens
during growth, using a first-order approximation in terms of spring-
force equation (y is downward positive):

Δρ
@2 L tð ÞR3

d tð Þ� 	
@t2

¼ ΔρgR3
d tð Þ − 3

4
σyy tð Þ −σ rr tð Þ� 	

R2
f tð Þ

R ¼ f t; μ; η;B;Δρ Nð Þ
L ¼ f t;R; μ; η;B;Δp Nð Þ

ðB1Þ

Here Rd(t), L(t), and Rf(t) are the drop radius, filament length, and
filament radius, respectively, the second term on the right is the
restoring force due to stretching of the filament, and the first term on
the right is the weight of the drop head. In the quasi-static limit, (B1)
becomes:

4
3
ΔρgR3

d t; Lð Þ ¼ σyy tð Þ−σ rr tð Þ� 	
R2
f t; Lð Þ ðB2Þ

(The radial component of viscoelastic stress σrr can be roughly
approximated as σxx in a 2D case.) With V representing the volume of
the filament, as L increases the filament radius Rf (t)∼(V/πL(t))1/2

decreases. The deviatoric extensional stress in the filament, σf, which
cannot be less than 4/3gΔρ Rd

3/Rf2 (the weight of the drop head divided
by the cross sectional area of filament section, πRf2), increases in
inverse proportion to Rf

2 and in direct proportion to L. σf may grow to
be come as large as (or exceed) Δρgh, especially if one takes into
account the weight of the filament.

Small elastic moduli will result in a relatively large compressibility
of the filament, which, consequently, will produce a thinner filament
(smaller Rf), smaller drop head (smaller Rd), and hence smaller
effective mass (4/3Δρπ Rd

3) at the end of the filament thanwill develop
for large elastic moduli. Thus, small elastic moduli may lead to
relatively slow growth. The stretching of compressible drop filament
results in an increase in the apparent viscosity (=stress/strain rate),
which can be referred to as effective “strain hardening.”

Smolka and Belmonte (2003) concluded that depending on De,
elasticity may either accelerate or decelerate the growth rate of drop
instability. Their spring-force equation gives only a first-order of
approximation, as it does not account, for example, for interaction
between the filament and source layer, or for the transition from small
instability to the drop mode. It must be noted that at the laboratory
scale, surface tension makes a major contribution to σrr and hence to
the stability of the layer. Naturally, surface tension does not exist at
tectonic scales, but in two-layered fluid systems, material contrasts
between the fluids play a role similar to that of surface tension
in mono-fluid laboratory experiments. Indeed, the resistance of
surrounding fluids to drop development is given by Stokes's and
buoyancy forces, which, like surface tension, are proportional to the
area (and thus to R2) of the sphere. Also, the tensional stresses are
maximum on the surface of the drop (Eq.s (A5), (A6) assuming r∼y).
Laboratory experiments of viscoelastic drops demonstrate complex
behavior: initial retardation in the development of the instability,
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followed by acceleration, and then a reduction of the growth rate
when the layer is over-stretched, and its effective viscosity starts to
increase (∼ drop mode).

The finite thickness of the source layer limits the maximum
amplitude of the instability and thus its terminal growth rate, ∂L/
∂t=w∞. In this case, the Deborah number is not constant, and
Sostarecz and Belmonte (2003) redefine it as:

DeDrop ¼ tMw=Rd≈−tM w d2W=dx2 if W∼hð Þ ðB3Þ

whereRd, the radius of the drop, is equal to −(d2W/dx2)−1 at the beginning
of drop formation, and w equals the deflection or stretching rate, ∂L/∂t,
when the viscoelastic drop develops. Decreasing the shear modulus
results in increasing tM but in decreasing d2W/dx2. Consequently,
according to (B3), elasticity may either increase or decrease DeDrop.

For low values of the Deborah number defined by (2) and
appropriate for the Earth's lithosphere (Deb10−3), the overall behavior
of the system approaches the viscous limit but still differs from
Newtonian behavior. In this case, if theMaxwell time is relatively long,
the perturbation of the layer interface may be damped faster than the
instability can grow. For a small shear modulus, the relaxation time
can be large, possibly large enough to prevent the growth of the
instability. The decelerating effect of smaller shear modulus in case of
viscoelastic drop should be most important when the drop is
immersed in an inviscid fluid. For a surrounding fluid with finite
viscosity and same elastic modulus as the “drop,” the stretching of the
filament would be hampered, and then the behavior of the instability
ought not differ much from that predicted by Biot's theory.
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